These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 5414535)
1. A phenomenological theory of muscular contraction. II. Generalized length variations. Bornhorst WJ; Minardi JE Biophys J; 1970 Feb; 10(2):155-71. PubMed ID: 5414535 [TBL] [Abstract][Full Text] [Related]
2. A phenomenological theory of muscular contraction. I. Rate equations at a given length based on irreversible thermodynamics. Bornhorst WJ; Minardi JE Biophys J; 1970 Feb; 10(2):137-54. PubMed ID: 5461140 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Caplan's irreversible thermodynamic theory of muscle contraction with chemical data. Bornhorst WJ; Minardi JE Biophys J; 1969 May; 9(5):654-65. PubMed ID: 5786314 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the sliding distance in shortening muscles and in polymerizing actin from Hill's force-velocity equation. Oplatka A Int J Biol Macromol; 2006 Dec; 40(1):40-6. PubMed ID: 16904176 [TBL] [Abstract][Full Text] [Related]
5. Capillary muscle. Cohen C; Mouterde T; Quéré D; Clanet C Proc Natl Acad Sci U S A; 2015 May; 112(20):6301-6. PubMed ID: 25944938 [TBL] [Abstract][Full Text] [Related]
6. Validity of the force-velocity relation for muscle contraction in the length region, l less than or equal to l-o. Matsumoto Y J Gen Physiol; 1967 May; 50(5):1125-37. PubMed ID: 6033577 [TBL] [Abstract][Full Text] [Related]
7. Non-hyperbolic force-velocity relationship in single muscle fibres. Edman KA; Mulieri LA; Scubon-Mulieri B Acta Physiol Scand; 1976 Oct; 98(2):143-56. PubMed ID: 1086583 [TBL] [Abstract][Full Text] [Related]
8. The relation between Hill's equation and individual muscle properties. Thaller S; Wagner H J Theor Biol; 2004 Dec; 231(3):319-32. PubMed ID: 15501465 [TBL] [Abstract][Full Text] [Related]
9. A thermodynamic optimization analysis of a possible relation between the parameters that determine the energetics of muscle contraction in steady state. Santillán M J Theor Biol; 1999 Jul; 199(1):105-12. PubMed ID: 10419763 [TBL] [Abstract][Full Text] [Related]
10. A thermodynamic muscle model and a chemical basis for A.V. Hill's muscle equation. Baker JE; Thomas DD J Muscle Res Cell Motil; 2000 May; 21(4):335-44. PubMed ID: 11032344 [TBL] [Abstract][Full Text] [Related]
11. The theory of sliding filament models for muscle contraction. I. The two-state model. Smith DA; Sicilia S J Theor Biol; 1987 Jul; 127(1):1-30. PubMed ID: 3669681 [TBL] [Abstract][Full Text] [Related]
12. Influence of muscle length on the force-velocity relation of K+-contractures in smooth muscle from rabbit urinary bladder. Uvelius B Acta Physiol Scand; 1977 Nov; 101(3):270-7. PubMed ID: 596202 [TBL] [Abstract][Full Text] [Related]
13. The synergetic enzyme theory of muscular contraction: II Relation between Hill's equations and functions of two-headed myosin. Shimizu H; Yamada T; Nishiyama K; Yano M J Theor Biol; 1976 Nov; 63(1):165-89. PubMed ID: 137348 [No Abstract] [Full Text] [Related]
14. [Thermodynamics and muscle contraction. II. Consequences of the principle of maximization of the rate of entropy production]. Nikol'skiĭ SS Biofizika; 1975; 20(2):241-5. PubMed ID: 1148298 [TBL] [Abstract][Full Text] [Related]
15. Analysis of a simple prototypal muscle model near to and far from equilibrium. Chen YD; Hill TL Proc Natl Acad Sci U S A; 1974 May; 71(5):1982-6. PubMed ID: 4525310 [TBL] [Abstract][Full Text] [Related]
16. Some self-consistent two-state sliding filament models of muscle contraction. Hill TL; Eisenberg E; Chen YD; Podolsky RJ Biophys J; 1975 Apr; 15(4):335-72. PubMed ID: 1125390 [TBL] [Abstract][Full Text] [Related]
17. Teaching from classic papers: Hill's model of muscle contraction. Holmes JW Adv Physiol Educ; 2006 Jun; 30(2):67-72. PubMed ID: 16709736 [TBL] [Abstract][Full Text] [Related]
18. Induced potential model for muscular contraction mechanism, including two attached states of myosin head. Mitsui T; Kumagai S; Chiba H; Yoshimura H; Ohshima H J Theor Biol; 1998 May; 192(1):35-41. PubMed ID: 9628837 [TBL] [Abstract][Full Text] [Related]
19. The Problem with Inventing Molecular Mechanisms to Fit Thermodynamic Equations of Muscle. Baker J Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895118 [TBL] [Abstract][Full Text] [Related]
20. Numerical study of the behavior of an activation parameter in a sliding filament cat papillary muscle model. Feit TS; Bass BG J Mechanochem Cell Motil; 1977 Dec; 4(4):275-302. PubMed ID: 753902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]