These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quantitative analysis of flagellar movement in hyperactivated and acrosome-reacted golden hamster spermatozoa. Ishijima S; Baba SA; Mohri H; Suarez SS Mol Reprod Dev; 2002 Mar; 61(3):376-84. PubMed ID: 11835583 [TBL] [Abstract][Full Text] [Related]
6. Reversible intracellular ATP changes in intact rat spermatozoa and effects on flagellar sperm movement. Jeulin C; Soufir JC Cell Motil Cytoskeleton; 1992; 21(3):210-22. PubMed ID: 1581974 [TBL] [Abstract][Full Text] [Related]
7. Sliding and bending in sea urchin sperm flagella. Gibbons IR Symp Soc Exp Biol; 1982; 35():225-87. PubMed ID: 6764041 [No Abstract] [Full Text] [Related]
8. Synchronous triggering of trout sperm is followed by an invariable set sequence of movement parameters whatever the incubation medium. Cosson MP; Cosson J; Billard R Cell Motil Cytoskeleton; 1991; 20(1):55-68. PubMed ID: 1756578 [TBL] [Abstract][Full Text] [Related]
9. 2-Chloro adenosine triphosphate as substrate for sea urchin axonemal movement. Omoto CK; Brokaw CJ Cell Motil Cytoskeleton; 1989; 13(4):239-44. PubMed ID: 2776223 [TBL] [Abstract][Full Text] [Related]
10. t haplotypes in the mouse compromise sperm flagellar function. Olds-Clarke P; Johnson LR Dev Biol; 1993 Jan; 155(1):14-25. PubMed ID: 8416830 [TBL] [Abstract][Full Text] [Related]
11. Interdoublet sliding in bovine spermatozoa: its relationship to flagellar motility and the action of inhibitory agents. Bird Z; Hard R; Kanous KS; Lindemann CB J Struct Biol; 1996; 116(3):418-28. PubMed ID: 8813000 [TBL] [Abstract][Full Text] [Related]
12. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. de Lamirande E; Gagnon C J Androl; 1992; 13(5):379-86. PubMed ID: 1331007 [TBL] [Abstract][Full Text] [Related]
13. Evolution of the flagellar waveform of ram spermatozoa in relation to the degree of epididymal maturation. Chevrier C; Dacheux JL Cell Motil Cytoskeleton; 1992; 23(1):8-18. PubMed ID: 1394463 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of flagellar motility deduced from backward-swimming bull sperm. Phillips DM; Kalay D J Exp Zool; 1984 Jul; 231(1):109-16. PubMed ID: 6470642 [TBL] [Abstract][Full Text] [Related]
15. Hyperactivation is the mode conversion from constant-curvature beating to constant-frequency beating under a constant rate of microtubule sliding. Ohmuro J; Ishijima S Mol Reprod Dev; 2006 Nov; 73(11):1412-21. PubMed ID: 16894536 [TBL] [Abstract][Full Text] [Related]
16. Decrease of internal free calcium and human sperm movement. Serres C; Feneux D; Berthon B Cell Motil Cytoskeleton; 1991; 18(3):228-40. PubMed ID: 2060032 [TBL] [Abstract][Full Text] [Related]
17. cAMP/ATP relationship in the activation of trout sperm motility: their interaction in membrane-deprived models and in live spermatozoa. Cosson MP; Cosson J; André F; Billard R Cell Motil Cytoskeleton; 1995; 31(2):159-76. PubMed ID: 7553909 [TBL] [Abstract][Full Text] [Related]
18. Kinematics of hamster sperm during penetration of the cumulus cell matrix. Drobnis EZ; Yudin AI; Cherr GN; Katz DF Gamete Res; 1988 Dec; 21(4):367-83. PubMed ID: 3220430 [TBL] [Abstract][Full Text] [Related]
19. Digital image analysis of the flagellar beat of activated and hyperactivated suncus spermatozoa. Kaneko T; Mōri T; Ishijima S Mol Reprod Dev; 2007 Apr; 74(4):478-85. PubMed ID: 17034047 [TBL] [Abstract][Full Text] [Related]
20. cAMP-dependent regulatory processes in the acquisition and control of sperm flagellar movement. Tash JS; Means AR Prog Clin Biol Res; 1988; 267():335-55. PubMed ID: 2853368 [No Abstract] [Full Text] [Related] [Next] [New Search]