These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 5416105)
41. Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals. Duncan DW; Landesman J; Walden CC Can J Microbiol; 1967 Apr; 13(4):397-403. PubMed ID: 6034412 [No Abstract] [Full Text] [Related]
42. [The mechanism of chemical and biological oxidation of sodium, calcium and iron sulfides]. Sorokin IuI Mikrobiologiia; 1970; 39(2):253-8. PubMed ID: 5493668 [No Abstract] [Full Text] [Related]
43. [Metal sulfides biodegradation by "Thiobacillus ferrooxidans": effect of their total surfaces]. Torma AE; Legault G Ann Microbiol (Paris); 1973 Jan; 124(1):111-21. PubMed ID: 4723414 [No Abstract] [Full Text] [Related]
44. [Role of phospholipids in the fractionation of stable sulfur isotopes during oxidation by Thiobacillus ferrooxidans]. Pivovarova TA; Miller IuM; Krasheninnikova SA; Kapustin OA; Karavaĭko GI Mikrobiologiia; 1982; 51(4):552-6. PubMed ID: 7144609 [TBL] [Abstract][Full Text] [Related]
45. Effect of S/N ratio on sulfide removal by autotrophic denitrification. Dolejs P; Paclík L; Maca J; Pokorna D; Zabranska J; Bartacek J Appl Microbiol Biotechnol; 2015 Mar; 99(5):2383-92. PubMed ID: 25698511 [TBL] [Abstract][Full Text] [Related]
46. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Bosch J; Lee KY; Jordan G; Kim KW; Meckenstock RU Environ Sci Technol; 2012 Feb; 46(4):2095-101. PubMed ID: 22142180 [TBL] [Abstract][Full Text] [Related]
47. Iron oxidation by washed cell suspensions of the chemoautotroph, Thiobacillus ferrooxidans. Landesman J; Duncan DW; Walden CC Can J Microbiol; 1966 Feb; 12(1):25-33. PubMed ID: 5923135 [No Abstract] [Full Text] [Related]
48. Dimethyl sulphide degradation using immobilized Thiobacillus thioparus in a biotrickling filter. Arellano-García L; Revah S; Ramírez M; Gómez JM; Cantero D Environ Technol; 2009 Nov; 30(12):1273-9. PubMed ID: 19950469 [TBL] [Abstract][Full Text] [Related]
49. Scanning electron microscopy of thiobacilli grown on colloïdal sulfur. Baldensperger J; Guarraia LJ; Humphreys WJ Arch Microbiol; 1974; 99(4):323-9. PubMed ID: 4611376 [No Abstract] [Full Text] [Related]
50. Studies on the incorporation of labelled sulphate into cells and cell-free extracts of Nitrosomonas europaea. Varma AK; Nicholas DJ Arch Mikrobiol; 1970; 73(4):293-307. PubMed ID: 4991964 [No Abstract] [Full Text] [Related]
51. Sulphate production by Paracoccus pantotrophus ATCC 35512 from different sulphur substrates: sodium thiosulphate, sulphite and sulphide. Meyer DD; Andrino FG; Possedente de Lira S; Fornaro A; Corção G; Brandelli A Environ Technol; 2016; 37(6):768-73. PubMed ID: 26269005 [TBL] [Abstract][Full Text] [Related]
52. Isolation of Thiobacillus sp from aerobic sludge of distillery and dairy effluent treatment plants and its sulfide oxidation activity at different concentrations. Ravichandra P; Mugeraya G; Rao AG; Ramakrishna M; Jetty A J Environ Biol; 2007 Oct; 28(4):819-23. PubMed ID: 18405118 [TBL] [Abstract][Full Text] [Related]
53. [Biological oxidation of sulfide raw material using a culture of Thiobacillus ferrooxidans under various conditions of leaching]. Fomchenko NV; Slavkina OV; Biriukov VV Prikl Biokhim Mikrobiol; 2003; 39(1):92-6. PubMed ID: 12625048 [TBL] [Abstract][Full Text] [Related]
54. Discrimination between 34S and 32S during bacterial metabolism of inorganic sulfur compounds. Fry B; Cox J; Gest H; Hayes JM J Bacteriol; 1986 Jan; 165(1):328-30. PubMed ID: 3941049 [TBL] [Abstract][Full Text] [Related]
55. Biological treatment of toxic petroleum spent caustic in fluidized bed bioreactor using immobilized cells of Thiobacillus RAI01. Potumarthi R; Mugeraya G; Jetty A Appl Biochem Biotechnol; 2008 Dec; 151(2-3):532-46. PubMed ID: 18574569 [TBL] [Abstract][Full Text] [Related]
56. Copper-molybdenum interactions with the sulfate-reducing system in rumen microorganisms. Huisingh J; Matrone G Proc Soc Exp Biol Med; 1972 Feb; 139(2):518-21. PubMed ID: 5059042 [No Abstract] [Full Text] [Related]
57. Marine Thiobacilli. II. Culture and ultrastructure. Tilton RC; Stewart GJ; Jones GE Can J Microbiol; 1967 Nov; 13(11):1529-34. PubMed ID: 6064044 [No Abstract] [Full Text] [Related]
58. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. Thomas D; Barbey R; Henry D; Surdin-Kerjan Y J Gen Microbiol; 1992 Oct; 138(10):2021-8. PubMed ID: 1479340 [TBL] [Abstract][Full Text] [Related]
59. Sulphur and carbon isotope fractionation by Salmonella heidelberg during anaerobic SO3= reduction in trypticase soy broth medium. Krouse HR; Sasaki A Can J Microbiol; 1968 Apr; 14(4):417-22. PubMed ID: 5646842 [No Abstract] [Full Text] [Related]
60. Preliminary study of treatment of sulphuric pickling water waste from steelmaking by bio-oxidation with Thiobacillus ferrooxidans. Garcia FJ; Rubio A; Sainz E; Gonzalez P; Lopez FA FEMS Microbiol Rev; 1994 Aug; 14(4):397-404. PubMed ID: 7917427 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]