These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 5417347)

  • 1. Action of pronase and neuraminidase on the electrophoretic mobility of erythrocytes from normal cats and those with spontaneous tumours.
    Mehrishi JN
    Vox Sang; 1970 Jan; 18(1):27-33. PubMed ID: 5417347
    [No Abstract]   [Full Text] [Related]  

  • 2. The surface chemistry of the erythrocytes membrane.
    Seaman GV; Brooks DE
    Bibl Anat; 1973; 11():251-9. PubMed ID: 4789048
    [No Abstract]   [Full Text] [Related]  

  • 3. [On erythrocyte aggregation with poly-lysine: inhibition by ganglioside, cancellation by pronase].
    Uhlenbruck G
    Naturwissenschaften; 1966 Oct; 53(19):505-6. PubMed ID: 5927819
    [No Abstract]   [Full Text] [Related]  

  • 4. On the agglutinogens of red cells developed with proteolytic enzymes and neuraminidase.
    Sagisaka K; Takahashi K
    Tohoku J Exp Med; 1976 Oct; 120(2):169-75. PubMed ID: 982434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and application of electrophoretic mobility analysis of human red blood cells to study their in vitro stability, interaction with polycations and proteolytic enzymes.
    Grandfils C; Foresto P; Riquelme B; Valverde J; Sondag-Thull D
    J Biomed Mater Res A; 2008 Feb; 84(2):535-44. PubMed ID: 17635023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of proteases and neuraminidase on RBC surface charge and agglutination. A kinetic study.
    Luner SJ; Sturgeon P; Szklarek D; McQuiston DT
    Vox Sang; 1975; 28(3):184-99. PubMed ID: 164087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophoretic mobility of the fetal red blood cell.
    Kosztolányi G; Jobst K
    Biol Neonate; 1975; 27(1-2):125-8. PubMed ID: 1148347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological and electron microscopic analysis of IgG anti-D saline hemagglutination of neuraminidase-and protease-modified red cells.
    Masouredis SP; Sudora EJ; Victoria EJ
    J Lab Clin Med; 1977 Nov; 90(5):929-48. PubMed ID: 409796
    [No Abstract]   [Full Text] [Related]  

  • 9. [Effect of La(3+) on electrophoretic mobility and aggregation of intact human erythrocytes and those treated with low concentrations of glutaric aldehyde].
    Sheremet'ev IuA; Sheremet'eva AV
    Biofizika; 2003; 48(1):63-7. PubMed ID: 12630116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of lectins with human erythrocytes. III. Surface charge density and agglutination.
    Schnebli HP; Roeder C; Tarcsay L
    Exp Cell Res; 1976 Mar; 98(2):273-6. PubMed ID: 1253847
    [No Abstract]   [Full Text] [Related]  

  • 11. Influence of polymer concentration and molecular weight and of enzymic glycocalyx modification on erythrocyte interaction in dextran solutions.
    Baker AJ; Coakley WT; Gallez D
    Eur Biophys J; 1993; 22(1):53-62. PubMed ID: 7685691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors influencing the agglutinability of red cells. 3. Physico-chemical studies on ox red cells of different classes of agglutinability.
    Uhlenbruck G; Seaman GV; Coombs RR
    Vet Rec; 1967 May; 80(18):420-8. PubMed ID: 6040284
    [No Abstract]   [Full Text] [Related]  

  • 13. [Procedures for the determination of the total neuraminic acid content of erythocytes and tumor cells, as well as in the use of pronase in tissue culture].
    Uhlenbruck G; Sehrbundt HJ
    Bibl Haematol; 1969; 32():337-48. PubMed ID: 5822811
    [No Abstract]   [Full Text] [Related]  

  • 14. Calcium ions and 1-palmitoyl carnitine reduce erythrocyte electrophoretic mobility: test of a surface charge hypothesis.
    Mészáros J; Villanova L; Pappano AJ
    J Mol Cell Cardiol; 1988 Jun; 20(6):481-92. PubMed ID: 3216404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topochemistry of the surface of some human blood elements.
    Mehrishi JN
    Bibl Anat; 1973; 11():260-71. PubMed ID: 4789050
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of neuraminidase and proteolytic enzymes on electrophoretic mobility of erythrocytes and their aggregation induced by La(3+)].
    Sheremet'ev IuA; Suslov FIu; Deriugina AV; Sheremet'eva AV
    Biofizika; 2000; 45(1):79-82. PubMed ID: 10732214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of membrane integral proteins in the modulation of red cell shape by albumin, dinitrophenol and the glass effect.
    Mehta NG
    Biochim Biophys Acta; 1983 Feb; 762(1):9-18. PubMed ID: 6338937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the sequestration of chemically and enzymatically modified erythrocytes.
    Smedsrøod B; Aminoff D
    Am J Hematol; 1983 Sep; 15(2):123-33. PubMed ID: 6310989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the proteolytic enzyme "Pronase". 2. Hemolytic action of Pronase on erythrocytes.
    FUJITA H; FUJITA T; MINAMI T; UEO H
    Hifuka Kiyo; 1961 Sep; 56():255-7. PubMed ID: 13895739
    [No Abstract]   [Full Text] [Related]  

  • 20. Action of proteolytic and glycolytic enzymes on the permeability of the blood-brain barrier.
    Robert AM; Godeau G
    Biomedicine; 1974 Jan; 21(1):36-9. PubMed ID: 4367421
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.