These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 5417453)

  • 1. The respiratory energetics of two species of stream caddis fly larvae in relation to water flow.
    Feldmeth CR
    Comp Biochem Physiol; 1970 Jan; 32(2):193-202. PubMed ID: 5417453
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of temperature, salinity, and dissolved oxygen concentration upon respiratory activity of the larva of Philanisus plebeius (Trichoptera).
    Leader JP
    J Insect Physiol; 1971 Oct; 17(10):1917-24. PubMed ID: 5097115
    [No Abstract]   [Full Text] [Related]  

  • 3. Respiration of Cecropia moth (Hyalophora cecropia L.) larvae.
    Schroeder L; Dunlap DG
    Comp Biochem Physiol; 1970 Aug; 35(4):953-7. PubMed ID: 4916387
    [No Abstract]   [Full Text] [Related]  

  • 4. Oxygen consumption of Paragnetina media (Walker): light-dark effect on respiratory rates.
    Kapoor NN
    Experientia; 1972 Nov; 28(11):1311-2. PubMed ID: 4638899
    [No Abstract]   [Full Text] [Related]  

  • 5. Cross-reactivity of IgE antibodies to caddis fly with arthropoda and mollusca.
    Koshte VL; Kagen SL; Aalberse RC
    J Allergy Clin Immunol; 1989 Aug; 84(2):174-83. PubMed ID: 2547857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of water "bound" by soluble subcellular components during low-temperature acclimation in the gall fly larva, Eurosta solidagensis.
    Storey KB; Baust JG; Buescher P
    Cryobiology; 1981 Jun; 18(3):315-21. PubMed ID: 7238084
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of water loss on the haemolymph of Arenivaga sp. and Periplaneta americana.
    Edney EB
    Comp Biochem Physiol; 1968 Apr; 25(1):149-58. PubMed ID: 5657192
    [No Abstract]   [Full Text] [Related]  

  • 8. Occupational allergy after exposure to caddis flies at a hydroelectric power plant.
    Kraut A; Sloan J; Silviu-Dan F; Peng Z; Gagnon D; Warrington R
    Occup Environ Med; 1994 Jun; 51(6):408-13. PubMed ID: 8044233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allergy to insects in Japan. III. High frequency of IgE antibody responses to insects (moth, butterfly, caddis fly, and chironomid) in patients with bronchial asthma and immunochemical quantitation of the insect-related airborne particles smaller than 10 microns in diameter.
    Kino T; Chihara J; Fukuda K; Sasaki Y; Shogaki Y; Oshima S
    J Allergy Clin Immunol; 1987 Jun; 79(6):857-66. PubMed ID: 3294975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Allergen skin tests to insects, chironomid, caddis fly and silkworm moth, in patients with nasal allergy].
    Ogino S; Irifune M; Ko S; Harada T; Kikumori H; Nose M; Matsunaga T
    Nihon Jibiinkoka Gakkai Kaiho; 1990 Aug; 93(8):1200-6. PubMed ID: 2231170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic input driving respiratory motoneurons in dragonfly larvae.
    Komatsu A
    Brain Res; 1980 Nov; 201(1):215-9. PubMed ID: 7417834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gas-chromatographic micromethod for respiration studies on insects.
    Tadmor U; Applebaum SW; Kafir R
    J Exp Biol; 1971 Apr; 54(2):437-41. PubMed ID: 5553420
    [No Abstract]   [Full Text] [Related]  

  • 13. Movement patterns and foraging ecology of a stream caddisfly larva.
    Hart DD; Resh VH
    Can J Zool; 1980 Jun; 58(6):1174-85. PubMed ID: 7427812
    [No Abstract]   [Full Text] [Related]  

  • 14. Intracellular activity in cricket neurons during the generation of behaviour patterns.
    Bentley DR
    J Insect Physiol; 1969 Apr; 15(4):677-99. PubMed ID: 5772206
    [No Abstract]   [Full Text] [Related]  

  • 15. The impact of depressed pH and elevated aluminum concentrations on specific dynamic action in Somatochlora cingulata (de Selys).
    Correa M; Coler RA; Yin CM; Venables BJ
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1985; 82(1):199-201. PubMed ID: 2865062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of ventilation in dragonfly larvae.
    Hughes GM; Mill PJ
    J Exp Biol; 1966 Apr; 44(2):317-33. PubMed ID: 5957026
    [No Abstract]   [Full Text] [Related]  

  • 17. Avian physiology.
    Dawson WR
    Annu Rev Physiol; 1975; 37():441-65. PubMed ID: 235879
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of sub-lethal high temperature on an insect, Rhodnius prolixus (Stål.). V. A possible mechanism of the inhibition of reproduction.
    Okasha AY
    J Exp Biol; 1970 Aug; 53(1):37-45. PubMed ID: 5483398
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure and function of the respiratory epithelium in the tracheal gills of stonefly larvae.
    Wichard W; Komnick H
    J Insect Physiol; 1974 Dec; 20(12):2397-406. PubMed ID: 4436584
    [No Abstract]   [Full Text] [Related]  

  • 20. Respiratory water loss in insects.
    Chown SL
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):791-804. PubMed ID: 12443935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.