These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 5418173)

  • 41. Conformation of N-(purin-6ylcarbamoyl) glycine, a hypermodified base in tRNA.
    Parthasarathy R; Ohrt JM; Chheda GB
    Biochem Biophys Res Commun; 1974 Apr; 57(3):649-53. PubMed ID: 4827827
    [No Abstract]   [Full Text] [Related]  

  • 42. Assembly of triple-stranded beta-sheet peptides at interfaces.
    Rapaport H; Möller G; Knobler CM; Jensen TR; Kjaer K; Leiserowitz L; Tirrell DA
    J Am Chem Soc; 2002 Aug; 124(32):9342-3. PubMed ID: 12167007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural requirements and thermodynamics of the interaction of proline peptides with profilin.
    Petrella EC; Machesky LM; Kaiser DA; Pollard TD
    Biochemistry; 1996 Dec; 35(51):16535-43. PubMed ID: 8987987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A 13C spin-lattice relaxation study of dipeptides containing glycine and proline: mobility of the cyclic proline side chain.
    Fossel ET; Easwaran KR; Blout ER
    Biopolymers; 1975 May; 14(5):927-35. PubMed ID: 1156651
    [No Abstract]   [Full Text] [Related]  

  • 45. Proline-containing beta-turns in peptides and proteins: analysis of structural data on globular proteins.
    Ananthanarayanan VS; Brahmachari SK; Pattabiraman N
    Arch Biochem Biophys; 1984 Aug; 232(2):482-95. PubMed ID: 6465887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural effects of substitutions on the p21 proteins.
    Pincus MR; Brandt-Rauf PW
    Proc Natl Acad Sci U S A; 1985 Jun; 82(11):3596-3600. PubMed ID: 3923480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inter-chain proline:proline contacts contribute to the stability of the triple helical conformation.
    Bhatnagar RS; Pattabiraman N; Sorensen KR; Langridge R; MacElroy RD; Renugopalakrishnan V
    J Biomol Struct Dyn; 1988 Oct; 6(2):223-33. PubMed ID: 3271521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biocompatibility of elastin-like polymer poly(VPAVG) microparticles: in vitro and in vivo studies.
    Rincón AC; Molina-Martinez IT; de Las Heras B; Alonso M; Baílez C; Rodríguez-Cabello JC; Herrero-Vanrell R
    J Biomed Mater Res A; 2006 Aug; 78(2):343-51. PubMed ID: 16646066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. THE ANTIGENICITY OF SOME SYNTHETIC POLY-IMINOACIDS. I. ANTIGENIC PROPERTIES OF POLY-L-PROLINE.
    JASIN HE; GLYNN LE
    Immunology; 1965 Jan; 8(1):95-105. PubMed ID: 14245319
    [TBL] [Abstract][Full Text] [Related]  

  • 50. X-ray diffraction studies of enzymes.
    Blow DM; Steitz TA
    Annu Rev Biochem; 1970; 39():63-100. PubMed ID: 5479039
    [No Abstract]   [Full Text] [Related]  

  • 51. The nonplanar peptide unit. III. Quantum chemical calculations for related compounds and experimental X-ray diffraction data.
    Kolaskar AS; Lakshminarayanan AV; Sarathy KP; Sasisekharan V
    Biopolymers; 1975 May; 14(5):1081-1094. PubMed ID: 1156645
    [No Abstract]   [Full Text] [Related]  

  • 52. Pyrrolidine ring puckering in cis and trans-proline residues in proteins and polypeptides. Different puckers are favoured in certain situations.
    Milner-White EJ; Bell LH; Maccallum PH
    J Mol Biol; 1992 Dec; 228(3):725-34. PubMed ID: 1469711
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polymers tripeptides as collagen models. II. Conformational changes of poly(L-prolyl-glycyl-L-prolyl) in solution.
    Engel J; Kurtz J; Katchalski E; Berger A
    J Mol Biol; 1966 May; 17(1):255-72. PubMed ID: 5961148
    [No Abstract]   [Full Text] [Related]  

  • 54. Structural investigation of poly-L,D-proline, a synthetic ion channel across bilayer membranes: crystal structure and molecular conformation of two tetra-D,L-proline derivatives.
    Colapietro M; De Santis P; Palleschi A; Spagna R
    Biopolymers; 1986 Dec; 25(12):2227-36. PubMed ID: 2432955
    [No Abstract]   [Full Text] [Related]  

  • 55. The conformational energy map of an alanyl residue preceding proline: a quantum-mechanical approach.
    Maigret M; Pullman B; Caillet J
    Biochem Biophys Res Commun; 1970 Aug; 40(4):808-13. PubMed ID: 5495728
    [No Abstract]   [Full Text] [Related]  

  • 56. Gas-phase basicity of glycine, alanine, proline, serine, lysine, histidine and some of their peptides by the thermokinetic method.
    Bouchoux G; Salpin JY
    Eur J Mass Spectrom (Chichester); 2003; 9(4):391-402. PubMed ID: 12939490
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Ramachandran plots of glycine and pre-proline.
    Ho BK; Brasseur R
    BMC Struct Biol; 2005 Aug; 5():14. PubMed ID: 16105172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular vibrations and normal modes in L-prolyl-glycyl-glycine using Wilson GF matrix method.
    Kumar A; Tandon P; Gupta VD
    Indian J Biochem Biophys; 2007 Dec; 44(6):450-7. PubMed ID: 18320844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Absorption of two proline containing peptides by rat small intestine in vivo.
    Lane AE; Silk DB; Clark ML
    J Physiol; 1975 Jun; 248(1):143-9. PubMed ID: 1151802
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide.
    Jacob J; Duclohier H; Cafiso DS
    Biophys J; 1999 Mar; 76(3):1367-76. PubMed ID: 10049319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.