BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 5419259)

  • 1. Formate as an intermediate in the bovine rumen fermentation.
    Hungate RE; Smith W; Bauchop T; Yu I; Rabinowitz JC
    J Bacteriol; 1970 May; 102(2):389-97. PubMed ID: 5419259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parameters of rumen fermentation in a continuously fed sheep: evidence of a microbial rumination pool.
    Hungate RE; Reichl J; Prins R
    Appl Microbiol; 1971 Dec; 22(6):1104-13. PubMed ID: 5167618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.
    He ZX; Qiao JY; Yan QX; Tan ZL; Wang M
    Animal; 2019 Jan; 13(1):90-97. PubMed ID: 29644945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attempts to induce reductive acetogenesis into a sheep rumen.
    Immig I; Demeyer D; Fiedler D; Van Nevel C; Mbanzamihigo L
    Arch Tierernahr; 1996; 49(4):363-70. PubMed ID: 8988318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissimilatory metabolism of nitrate by the rumen microbiota.
    Jones GA
    Can J Microbiol; 1972 Dec; 18(12):1783-7. PubMed ID: 4675328
    [No Abstract]   [Full Text] [Related]  

  • 6. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen.
    Paynter MJ; Hungate RE
    J Bacteriol; 1968 May; 95(5):1943-51. PubMed ID: 4870286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of bovine ruminal and equine cecal microbial populations enriched for enhanced nitro-toxin metabolizing activity.
    Zhang Y; Long R; Warzecha CM; Coverdale JA; Latham EA; Hume ME; Callaway TR; O'Neil MR; Beier RC; Anderson RC; Nisbet DJ
    Anaerobe; 2014 Apr; 26():7-13. PubMed ID: 24374155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formate dissimilation and methane production in bovine rumen contents.
    CARROLL EJ; HUNGATE RE
    Arch Biochem Biophys; 1955 Jun; 56(2):525-36. PubMed ID: 14377602
    [No Abstract]   [Full Text] [Related]  

  • 10. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen.
    van Lingen HJ; Fadel JG; Moraes LE; Bannink A; Dijkstra J
    J Theor Biol; 2019 Nov; 480():150-165. PubMed ID: 31401059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows.
    Guyader J; Eugène M; Doreau M; Morgavi DP; Gérard C; Martin C
    J Dairy Sci; 2017 Mar; 100(3):1845-1855. PubMed ID: 28109588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of anaerobic oxalate-degrading enrichment cultures from the rumen.
    Dawson KA; Allison MJ; Hartman PA
    Appl Environ Microbiol; 1980 Oct; 40(4):840-6. PubMed ID: 7425629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production.
    Oh S; Shintani R; Koike S; Kobayashi Y
    J Dairy Sci; 2017 Mar; 100(3):1923-1934. PubMed ID: 28088403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fatty acid derivatives on rumen methane and propionate in vitro.
    Van Nevel CJ; Demeyer DI; Henderickx HK
    Appl Microbiol; 1971 Feb; 21(2):365-6. PubMed ID: 5544299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of formate in Methanobacterium formicicum.
    Schauer NL; Ferry JG
    J Bacteriol; 1980 Jun; 142(3):800-7. PubMed ID: 6769911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants.
    Watanabe Y; Suzuki R; Koike S; Nagashima K; Mochizuki M; Forster RJ; Kobayashi Y
    J Dairy Sci; 2010 Nov; 93(11):5258-67. PubMed ID: 20965342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats.
    Zhang XM; Medrano RF; Wang M; Beauchemin KA; Ma ZY; Wang R; Wen JN; Lukuyu BA; Tan ZL; He JH
    J Anim Sci; 2019 Dec; 97(12):4999-5008. PubMed ID: 31740932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen.
    Greening RC; Leedle JA
    Arch Microbiol; 1989; 151(5):399-406. PubMed ID: 2500921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formate-removing inoculum dominated by Methanobacterium congolense supports succinate production from crude glycerol fermentation.
    Kim NY; Lee CM; Kim SY; Kim OB
    J Ind Microbiol Biotechnol; 2019 May; 46(5):625-634. PubMed ID: 30783892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caffeic acid modulates methane production and rumen fermentation in an opposite way with high-forage or high-concentrate substrate in vitro.
    Jin Q; You W; Tan X; Liu G; Zhang X; Liu X; Wan F; Wei C
    J Sci Food Agric; 2021 May; 101(7):3013-3020. PubMed ID: 33205409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.