These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 5419800)
21. Novel pathway for degradation of protocatechuic acid in Bacillus species. Crawford RL J Bacteriol; 1975 Feb; 121(2):531-6. PubMed ID: 163224 [TBL] [Abstract][Full Text] [Related]
22. [Degradation of chlorinated benzenes, phenols and cyclohexane derivatives by benzene and phenol utilizing soil bacteria under aerobic conditions (author's transl)]. Haider K; Jagnow G; Kohnen R; Lim SU Arch Microbiol; 1974 Mar; 96(3):183-200. PubMed ID: 4134769 [No Abstract] [Full Text] [Related]
23. Initial reactions in the bacterial degradation of aromatic hydrocarbons. Gibson DT Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):157-68. PubMed ID: 998044 [TBL] [Abstract][Full Text] [Related]
24. The metabolism of glyceryl ( 35 S)sulfoquinovoside by the coral tree, Erythrina crista-galli, and alfalfa, Medicago sativa. Lee RF; Benson AA Biochim Biophys Acta; 1972 Jan; 261(1):35-7. PubMed ID: 5012471 [No Abstract] [Full Text] [Related]
25. [Studies of the enzymes of Schizosaccharomyces acidodevoratus, decomposing L-malic acid]. Flesch P; Holbach B Arch Mikrobiol; 1970; 74(3):213-22. PubMed ID: 5495384 [No Abstract] [Full Text] [Related]
26. A natural isolate of Pseudomonas maltophila which degrades aromatic sulfonic acids. Lee NA; Clark DP FEMS Microbiol Lett; 1993 Mar; 107(2-3):151-5. PubMed ID: 8472898 [TBL] [Abstract][Full Text] [Related]
27. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida. Chapman PJ; Ribbons DW J Bacteriol; 1976 Mar; 125(3):975-84. PubMed ID: 1254564 [TBL] [Abstract][Full Text] [Related]
28. The methanogenic biodegradation of catechol by a microbial consortium: evidence for the production of phenol through cis-benzenediol. Balba MT; Evans WC Biochem Soc Trans; 1980 Aug; 8(4):452-3. PubMed ID: 7450176 [No Abstract] [Full Text] [Related]
29. Metabolism of nitrilotriacetate by cells of Pseudomonas species. Tiedje JM; Mason BB; Warren CB; Malec EJ Appl Microbiol; 1973 May; 25(5):811-8. PubMed ID: 4715561 [TBL] [Abstract][Full Text] [Related]
30. The mechanisms of microbial oxidations of petroleum hydrocarbons. van der Linden AC; Thijsse GJ Adv Enzymol Relat Areas Mol Biol; 1965; 27():469-546. PubMed ID: 4883740 [No Abstract] [Full Text] [Related]
31. [Biochemical and genetic studies on decomposition aromatic compounds by Pseudomonas]. Nakazawa A Nihon Saikingaku Zasshi; 1976 Mar; 31(2):285-99. PubMed ID: 787576 [No Abstract] [Full Text] [Related]
32. The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Mattison RG; Taki H; Harayama S Microb Ecol; 2005 Jan; 49(1):142-50. PubMed ID: 15690226 [TBL] [Abstract][Full Text] [Related]
33. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Sala-Trepat JM; Murray K; Williams PA Eur J Biochem; 1972 Jul; 28(3):347-56. PubMed ID: 4342908 [No Abstract] [Full Text] [Related]
34. Sulfur and oxygen isotope fractionation during benzene, toluene, ethyl benzene, and xylene degradation by sulfate-reducing bacteria. Knöller K; Vogt C; Richnow HH; Weise SM Environ Sci Technol; 2006 Jun; 40(12):3879-85. PubMed ID: 16830556 [TBL] [Abstract][Full Text] [Related]
35. Absence of storage products in cultures of Pseudomonas aeruginosa grown with excess carbon or nitrogen. MacKelvie RM; Campbell JJ; Gronlund AF Can J Microbiol; 1968 Jun; 14(6):627-31. PubMed ID: 4969797 [No Abstract] [Full Text] [Related]
36. Biotransformation of benzene and toluene to catechols by phenol hydroxylase from Arthrobacter sp. W1. Ma F; Shi SN; Sun TH; Li A; Zhou JT; Qu YY Appl Microbiol Biotechnol; 2013 Jun; 97(11):5097-103. PubMed ID: 22854893 [TBL] [Abstract][Full Text] [Related]
37. Microbial degradation of secondary n-alkyl sulfates and secondary alkanols. Lijmbach GW; Brinkhuis E Antonie Van Leeuwenhoek; 1973; 39(3):415-23. PubMed ID: 4543051 [No Abstract] [Full Text] [Related]
38. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. Zhou YY; Chen DZ; Zhu RY; Chen JM Bioresour Technol; 2011 Jun; 102(12):6644-9. PubMed ID: 21511464 [TBL] [Abstract][Full Text] [Related]
39. Aerobic metabolism of L- -lysine in a Pseudomonas. Coenzyme A-dependent acetylation of L- -lysine. Edmunds HN; Barker HA Arch Biochem Biophys; 1973 Jan; 154(1):460-70. PubMed ID: 4689786 [No Abstract] [Full Text] [Related]
40. The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. II. The degradative pathway. Harper DB; Blakley ER Can J Microbiol; 1971 May; 17(5):645-50. PubMed ID: 5087890 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]