These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 5422554)

  • 21. Aspects of influx and efflux of homovanillic acid of rat cerebrospinal fluid.
    Aizenstein ML; Korf J
    Brain Res; 1978 Jun; 149(1):129-40. PubMed ID: 656951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of acetylcholine during perfusion of liquor-spaces and its influence on outflow volume.
    Levinger IM; Edery H
    Experientia; 1971 Mar; 27(3):291-3. PubMed ID: 5546646
    [No Abstract]   [Full Text] [Related]  

  • 23. Cerebrospinal fluid formation in ventricles and spinal subarachnoid space of the rhesus monkey.
    Lux WE; Fenstermacher JD
    J Neurosurg; 1975 Jun; 42(6):674-8. PubMed ID: 1095693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Technical note: a new model for quantitative analysis of brain oedema resolution into the ventricles and the subarachnoid space.
    Uhl E; Wrba E; Nehring V; Chang RC; Baethmann A; Reulen HJ
    Acta Neurochir (Wien); 1999; 141(1):89-92. PubMed ID: 10071691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of dexamethasone phosphate on the production rate of cerebrospinal fluid in the spinal subarachnoid space of dogs.
    Sato O; Hara M; Asai T; Tsugane R; Kageyama N
    J Neurosurg; 1973 Oct; 39(4):480-4. PubMed ID: 4730337
    [No Abstract]   [Full Text] [Related]  

  • 26. The mechanism of drainage of the cerebrospinal fluid.
    Davson H; Domer FR; Hollingsworth JR
    Brain; 1973 Jun; 96(2):329-36. PubMed ID: 4197586
    [No Abstract]   [Full Text] [Related]  

  • 27. An alternative pathway of cerebrospinal fluid absorption in communicating hydrocephalus. Transependymal movement.
    James AE; Strecker EP; Sperber E; Flor WJ; Merz T; Burns B
    Radiology; 1974 Apr; 111(1):143-6. PubMed ID: 4406037
    [No Abstract]   [Full Text] [Related]  

  • 28. Ethanol inhibition of transport of 5-hydroxyindoleacetic acid from cerebrospinal fluid.
    Tabakoff B; Bulat M; Anderson RA
    Nature; 1975 Apr; 254(5502):708-10. PubMed ID: 1124132
    [No Abstract]   [Full Text] [Related]  

  • 29. Rapid solute transport throughout the brain via paravascular fluid pathways.
    Rennels ML; Blaumanis OR; Grady PA
    Adv Neurol; 1990; 52():431-9. PubMed ID: 2396537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The sealing action of subarachnoid blood.
    McQueen JD; Northrup BE; Leibrock LG; Morooney K
    Acta Neurol Latinoam; 1971; 1 Suppl():Suppl 1:89-98. PubMed ID: 5172639
    [No Abstract]   [Full Text] [Related]  

  • 31. Subarachnoid versus ventricular perfusion in the rabbit.
    Domer FR; Davson H; Hollingsworth JR
    Brain Res; 1973 Aug; 58(1):81-94. PubMed ID: 4354379
    [No Abstract]   [Full Text] [Related]  

  • 32. A technique for perfusing the cerebrospinal fluid spaces of the cat from lateral ventricle via the cisterna magna to the cortical subarachnoid space [proceedings].
    Liew MC; Mackenna BR; Watt JA
    J Physiol; 1977 Dec; 273(2):20P-21P. PubMed ID: 599433
    [No Abstract]   [Full Text] [Related]  

  • 33. Transport of 5-hydroxy-3-indoleacetic acid by spinal cord during subarachnoid perfusion.
    Kessler JA; Patlak CS; Fenstermacher JD
    Brain Res; 1976 Nov; 116(3):471-83. PubMed ID: 824024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. K 42 distribution in brain during simultaneous ventriculocisternal and subarachnoid perfusion.
    Pape LG; Katzman R
    Brain Res; 1972 Mar; 38(1):49-69. PubMed ID: 5067066
    [No Abstract]   [Full Text] [Related]  

  • 35. Perfusion of cerebral ventricles: assay of pharmacologically active substances in the effluent from the cisterna and the aqueduct.
    BHATTACHARYA BK; FELDBERG W
    Br J Pharmacol Chemother; 1958 Jun; 13(2):163-74. PubMed ID: 13536281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exchange of albumin between blood, cerebrospinal fluid, and brain in the cat.
    Hochwald GM; Wallenstein M
    Am J Physiol; 1967 May; 212(5):1199-204. PubMed ID: 6023877
    [No Abstract]   [Full Text] [Related]  

  • 37. HYDROCEPHALUS: CHANGES IN FORMATION AND ABSORPTION OF CEREBROSPINAL FLUID WITHIN THE CEREBRAL VENTRICLES.
    BERING EA; SATO O
    J Neurosurg; 1963 Dec; 20():1050-63. PubMed ID: 14186107
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of anatomical fine structure on the dispersion of solutes in the spinal subarachnoid space.
    Stockman HW
    J Biomech Eng; 2007 Oct; 129(5):666-75. PubMed ID: 17887892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Alterations in spinal, but not cerebral, cerebrospinal fluid Na+ concentrations affect the isoflurane minimum alveolar concentration in rats.
    Laster MJ; Zhang Y; Eger EI; Shnayderman D; Sonner JM
    Anesth Analg; 2007 Sep; 105(3):661-5. PubMed ID: 17717220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clearance of some quaternary amines from the spinal subarachnoid space.
    Aquilonius SM; Winbladh B; Zillén S
    Acta Physiol Scand; 1975 Mar; 93(3):378-84. PubMed ID: 1146579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.