These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 5423072)

  • 1. Interfacial barrier limited interphase transport of cholesterol in the aqueous polysorbate 80-hexadecane system.
    Bikhazi AB; Higuchi WI
    J Pharm Sci; 1970 Jun; 59(6):744-8. PubMed ID: 5423072
    [No Abstract]   [Full Text] [Related]  

  • 2. Interfacial barriers to the transport of sterols and other organic compounds at the aqueous polysorbate 80-hexadecane interface.
    Bikhazi AB; Higuchi WI
    Biochim Biophys Acta; 1971 Jun; 233(3):676-87. PubMed ID: 4329757
    [No Abstract]   [Full Text] [Related]  

  • 3. Interfacial barriers in interphase transport. 3. Transport of cholesterol and other organic solutes into hexadecane-gelatin-water matrices.
    Ghanem AH; Higuchi WI; Simonelli AP
    J Pharm Sci; 1970 May; 59(5):659-65. PubMed ID: 5446422
    [No Abstract]   [Full Text] [Related]  

  • 4. Two-step interfacial barrier mechanism for the transport of micelle-solubilized solute across an oil-water interface.
    Surpuriya V; Higuchi WI
    Biochim Biophys Acta; 1972 Dec; 290(1):375-83. PubMed ID: 4640769
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of polysorbate 60 on interphase transport of cholesterol.
    McNulty PB
    J Pharm Sci; 1975 Sep; 64(9):1500-3. PubMed ID: 1185566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial barriers in interphase transport. II. Influence of additives upon the transport of diethylphthalate across the hexadecane-gelatin-water interface.
    Ghanem AH; Higuchi WI; Simonelli AP
    J Pharm Sci; 1970 Feb; 59(2):232-7. PubMed ID: 5411345
    [No Abstract]   [Full Text] [Related]  

  • 7. Interfacial barriers in interphase transport: retardation of the transport of diethylphthalate across the hexadecane-water interface by an adsorbed gelatin film.
    Ghanem AH; Higuchi WI; Simonelli AP
    J Pharm Sci; 1969 Feb; 58(2):165-74. PubMed ID: 5779852
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms of interphase transport. II. Theoretical considerations and experimental evaluation of interfacially controlled transport in solubilized systems.
    Goldberg AH; Higuchi WI
    J Pharm Sci; 1969 Nov; 58(11):1341-52. PubMed ID: 5349746
    [No Abstract]   [Full Text] [Related]  

  • 9. Cholesterol in mycoplasma membranes. I. Kinetics and equilibrium studies of cholesterol uptake by the cell membrane of Acholeplasma laidlawii.
    Gershfeld NL; Wormser M; Razin S
    Biochim Biophys Acta; 1974 Jun; 352(3):371-84. PubMed ID: 4841672
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of cationic surfactant on transport of surface-active and non-surface-active model drugs and emulsion stability in triphasic systems.
    Chidambaram N; Burgess DJ
    AAPS PharmSci; 2000; 2(3):E28. PubMed ID: 11741244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of micelle formation and the nature of the oil-phase on the distribution of a non-ionic surfactant in three- and four-component emulsions.
    Marland JS; Mulley BA
    J Pharm Pharmacol; 1972 Sep; 24(9):729-34. PubMed ID: 4404078
    [No Abstract]   [Full Text] [Related]  

  • 12. Direct membrane method for the study of interface-controlled transport of cholesterol in aqueous media.
    Karth MG; Higuchi WI; Fox JL
    J Pharm Sci; 1985 Jun; 74(6):612-7. PubMed ID: 4020647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of alkyl homologs across synthetic and biological membranes: a new model for chain length-activity relationships.
    Yalkowsky SH; Flynn GL
    J Pharm Sci; 1973 Feb; 62(2):210-7. PubMed ID: 4686391
    [No Abstract]   [Full Text] [Related]  

  • 14. The kinetics of the in vitro cholesterol uptake at the endothelial cell surface of the rabbit aorta.
    Jensen J
    Biochim Biophys Acta; 1967 Jul; 135(3):544-56. PubMed ID: 6048823
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of long-chain alcohols on SDS partitioning to the oil/water interface of emulsions and on droplet size.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Nov; 315(1):307-12. PubMed ID: 17662299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol dissolution rate in micellar bile acid solutions: retarding effect of added lecithin.
    Higuchi WI; Prakongpan S; Surpuriya V; Young F
    Science; 1972 Nov; 178(4061):633-4. PubMed ID: 5086400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A further study of the kinetics of cholesterol uptake at the endothelial cell surface of the rabbit aorta in vitro.
    Jensen J
    Biochim Biophys Acta; 1969 Jan; 173(1):71-7. PubMed ID: 5775941
    [No Abstract]   [Full Text] [Related]  

  • 18. A phase-rule study of multiple-phase formation in a model emulsion system containing water, n-octanol, n-dodecane and a non-ionic surface-active agent at 10 and 25 degrees.
    Marland JS; Mulley BA
    J Pharm Pharmacol; 1971 Aug; 23(8):561-72. PubMed ID: 4397738
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of bending rigidity and interfacial permeability on the dynamical behavior of water-in-water emulsions.
    Scholten E; Sagis LM; van der Linden E
    J Phys Chem B; 2006 Feb; 110(7):3250-6. PubMed ID: 16494336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonelectrolyte diffusion through lecithin-water lamellar phases and red-cell membranes.
    Lange Y; Bobo CM; Solomon AK
    Biochim Biophys Acta; 1974 Mar; 339(3):347-58. PubMed ID: 4858059
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.