These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 5424839)
1. Shear-dependent deformation of erythrocytes in rheology of human blood. Chien S; Usami S; Dellenback RJ; Gregersen MI Am J Physiol; 1970 Jul; 219(1):136-42. PubMed ID: 5424839 [No Abstract] [Full Text] [Related]
2. Analysis of viscous deformation of the red cell and its effect upon microvascular flow. Wells R; Schmid-Schönbein H; Bygdeman S Bibl Anat; 1969; 10():92-8. PubMed ID: 5407427 [No Abstract] [Full Text] [Related]
3. [Microrheology of blood in capillaries (author's transl)]. Gaehtgens P Arzneimittelforschung; 1981; 31(11a):1995-8. PubMed ID: 7199287 [TBL] [Abstract][Full Text] [Related]
4. Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. Chien S; Usami S; Dellenback RJ; Gregersen MI Am J Physiol; 1970 Jul; 219(1):143-53. PubMed ID: 5424840 [No Abstract] [Full Text] [Related]
5. Rheological significance of species differences in erythrocyte deformability. Gregersen MI; Usami S; Bryant CA; Chien S; Magazinovic V Biorheology; 1970 Jan; 6(3):249. PubMed ID: 5418890 [No Abstract] [Full Text] [Related]
7. Rheology of sickle cells and its role in microcirculatory dynamics. Chien S; Kaperonis AA; King RG; Lipowsky HH; Schmalzer EA; Sung LA; Sung KL; Usami S Prog Clin Biol Res; 1987; 240():151-65. PubMed ID: 3615484 [TBL] [Abstract][Full Text] [Related]
8. [Physiology and physiopathology of the microcirculation from the rheologic view point]. Schmid-Schönbein H Internist (Berl); 1982 Jul; 23(7):359-74. PubMed ID: 7049998 [No Abstract] [Full Text] [Related]
9. Blood flow in capillary tubes: curvature and gravity effects. Hung TC; Hung TK; Bugliarello G Biorheology; 1980; 17(4):331-42. PubMed ID: 7260345 [No Abstract] [Full Text] [Related]
10. [Macro- and micro-rheology of blood circulation]. Niimi H Iyodenshi To Seitai Kogaku; 1983 Aug; 21(4):225-32. PubMed ID: 6366292 [No Abstract] [Full Text] [Related]
11. Effect of low fibrinogen concentrations on the rheology of human blood in vitro. Blättler W; Straub PW; Jeanneret C; Horak GS Am J Physiol; 1979 Mar; 236(3):H447-50. PubMed ID: 154846 [TBL] [Abstract][Full Text] [Related]
13. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation. Schmid-Schönbein H Int Rev Physiol; 1976; 9():1-62. PubMed ID: 977248 [TBL] [Abstract][Full Text] [Related]
14. Prediction of anomalous blood viscosity in confined shear flow. Thiébaud M; Shen Z; Harting J; Misbah C Phys Rev Lett; 2014 Jun; 112(23):238304. PubMed ID: 24972235 [TBL] [Abstract][Full Text] [Related]
15. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation. Dong C; Chadwick RS; Schechter AN Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913 [TBL] [Abstract][Full Text] [Related]
16. Concentration effects on viscosity in models of blood flow through capillaries. Tickner EG Microvasc Res; 1972 Jan; 4(1):102-4. PubMed ID: 5036676 [No Abstract] [Full Text] [Related]
17. [The role of mathematical models in microhemorheology (author's transl)]. Gross JF; Gersten K Arzneimittelforschung; 1981; 31(11a):1989-95. PubMed ID: 7199286 [TBL] [Abstract][Full Text] [Related]
18. Implications of a theory of erythrocyte motion in narrow capillaries. Fitz-Gerald JM J Appl Physiol; 1969 Dec; 27(6):912-8. PubMed ID: 5353223 [No Abstract] [Full Text] [Related]
19. A measuring device to determine a universal parameter for the flow characteristics of blood: measurement of the yield shear stress in a branched capillary. Radtke H; Schneider R; Witt R; Kiesewetter H; Schmid-Schönbein H Adv Exp Med Biol; 1984; 169():851-7. PubMed ID: 6731131 [No Abstract] [Full Text] [Related]