BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 5426270)

  • 1. Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha.
    Schmidt I
    Curr Microbiol; 2009 Aug; 59(2):130-8. PubMed ID: 19452213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apparent and measured rates of nitrification in the hypolimnion of a mesotrophic lake.
    Hall GH
    Appl Environ Microbiol; 1982 Mar; 43(3):542-7. PubMed ID: 16345962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers.
    Schmidt I; Steenbakkers PJ; op den Camp HJ; Schmidt K; Jetten MS
    J Bacteriol; 2004 May; 186(9):2781-8. PubMed ID: 15090520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose.
    Hommes NG; Sayavedra-Soto LA; Arp DJ
    J Bacteriol; 2003 Dec; 185(23):6809-14. PubMed ID: 14617645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of organic compounds into cell protein by lithotrophic, ammonia-oxidizing bacteria.
    Martiny H; Koops HP
    Antonie Van Leeuwenhoek; 1982; 48(4):327-36. PubMed ID: 7149699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton electrochemical gradients in washed cells of Nitrosomonas europaea and Nitrobacter agilis.
    Kumar S; Nicholas DJ
    J Bacteriol; 1983 Apr; 154(1):65-71. PubMed ID: 6833187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiration-dependent proton translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidations.
    Hollocher TC; Kumar S; Nicholas DJ
    J Bacteriol; 1982 Mar; 149(3):1013-20. PubMed ID: 6277846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of procaryotes?
    Smith AJ; Hoare DS
    Bacteriol Rev; 1977 Jun; 41(2):419-48. PubMed ID: 329833
    [No Abstract]   [Full Text] [Related]  

  • 9. The biochemistry of nitrifying microorganisms.
    Wallace W; Nicholas DJ
    Biol Rev Camb Philos Soc; 1969 Jul; 44(3):359-91. PubMed ID: 4893925
    [No Abstract]   [Full Text] [Related]  

  • 10. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism.
    Kelly DP
    Annu Rev Microbiol; 1971; 25():177-210. PubMed ID: 4342704
    [No Abstract]   [Full Text] [Related]  

  • 11. Intermediary metabolism of carbon compounds by nitrifying bacteria.
    Wallace W; Knowles SE; Nicholas DJ
    Arch Mikrobiol; 1970; 70(1):26-42. PubMed ID: 5426270
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy metabolism of Phycomyces blakesleeanus. The citric acid cycle and associated amino acids.
    Gangloff EC
    Can J Microbiol; 1966 Feb; 12(1):1-4. PubMed ID: 5925648
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of growth substrate on enzymes of the citric and glyoxylic acid cycles in Thiobacillus novellus.
    Charles AM
    Can J Microbiol; 1971 May; 17(5):617-24. PubMed ID: 5087888
    [No Abstract]   [Full Text] [Related]  

  • 14. CO 2 fixation by the blue-green alga Anacystis nidulans.
    Jansz ER; Maclean FI
    Can J Microbiol; 1973 Apr; 19(4):497-504. PubMed ID: 4633654
    [No Abstract]   [Full Text] [Related]  

  • 15. Carbon dioxide fixation and phosphoenolpyruvate carboxylase in Ferrobacillus ferrooxidans.
    Din GA; Suzuki I; Lees H
    Can J Microbiol; 1967 Nov; 13(11):1413-9. PubMed ID: 4294210
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.