These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 5428096)

  • 1. Effect of nonionic surfactants on the transport of testosterone across a cellulose acetate membrane.
    Short PM; Abbs ET; Rhodes CT
    J Pharm Sci; 1970 Jul; 59(7):995-8. PubMed ID: 5428096
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of non-ionic surfactants on permeation of hydrocortisone, dexamethasone, testosterone and progesterone across cellulose acetate membrane.
    Barry BW; El Eini DI
    J Pharm Pharmacol; 1976 Mar; 28(3):219-27. PubMed ID: 6696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some investigations of the effect of a non-ionic surfactant on the diffusion of hydrocortisone across a cellulose acetate membrane.
    Short MP; Rhodes CT
    J Pharm Pharmacol; 1971 Dec; 23():239S. PubMed ID: 4401495
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of surfactants on diffusion of drugs across membranes.
    Short MP; Rhodes CT
    Nat New Biol; 1972 Mar; 236(63):44-5. PubMed ID: 4502423
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of geometrical and chemical constraints on water flux across artificial membranes.
    Gary-Bobo CM; Solomon AK
    J Gen Physiol; 1971 May; 57(5):610-22. PubMed ID: 5553104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved transport apparatus for examining diffusion of drugs across isolated tissues and synthetic membranes.
    Biber MZ; Rhodes CT
    J Pharm Sci; 1976 Apr; 65(4):564-6. PubMed ID: 1271256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of surface-active substances on artificial (hydrophilic) membranes].
    Richter B; Florstedt H; Voigt R; Bornschein M
    Pharmazie; 1972 Sep; 27(9):589-95. PubMed ID: 5086356
    [No Abstract]   [Full Text] [Related]  

  • 8. Drug release from hydroxypropyl cellulose-polyvinyl acetate films.
    Borodkin S; Tucker FE
    J Pharm Sci; 1974 Sep; 63(9):1359-64. PubMed ID: 4154374
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of surfactants and thermodynamic activity of model active ingredient on transport over plant leaf cuticle.
    Fagerström A; Kocherbitov V; Ruzgas T; Westbye P; Bergström K; Engblom J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():572-9. PubMed ID: 23261582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforced cellulose acetate dialysis membranes.
    Mason NS; Lindan O; Sparks RE
    Trans Am Soc Artif Intern Organs; 1968; 14():31-5. PubMed ID: 5701551
    [No Abstract]   [Full Text] [Related]  

  • 11. Transport parameters in a porous cellulose acetate membrane.
    DiPolo R; Sha'afi RI; Solomon AK
    J Gen Physiol; 1970 Jan; 55(1):63-76. PubMed ID: 5410490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometric and conductimetric studies of micellar solubilization. Nonionic surfactants with testosterone and amphetamine.
    Choulis NH
    Pharmazie; 1973 Jun; 28(6):376-8. PubMed ID: 4726395
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of hydrogen-bonding in nonelectrolyte diffusion through dense artificial membranes.
    Gary-Bobo CM; DiPolo R; Solomon AK
    J Gen Physiol; 1969 Sep; 54(3):369-82. PubMed ID: 5806595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes.
    Campbell P; Srinivasan R; Knoell T; Phipps D; Ishida K; Safarik J; Cormack T; Ridgway H
    Biotechnol Bioeng; 1999 Sep; 64(5):527-44. PubMed ID: 10404233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeation mechanisms through artificial lipoidal membranes and effects of synthetic surfactants on xenobiotic permeability.
    Pérez-Buendía MD; Gómez-Pérez B; Plá-Delfina JM
    Arzneimittelforschung; 1993 Jul; 43(7):789-94. PubMed ID: 8369014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new proposal for the action of vasopressin, based on studies of a complex synthetic membrane.
    Hays RM
    J Gen Physiol; 1968 Mar; 51(3):385-98. PubMed ID: 5648834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of alkyl homologs across synthetic and biological membranes: a new model for chain length-activity relationships.
    Yalkowsky SH; Flynn GL
    J Pharm Sci; 1973 Feb; 62(2):210-7. PubMed ID: 4686391
    [No Abstract]   [Full Text] [Related]  

  • 18. Correlation and prediction of mass transport across membranes. I. Influence of alkyl chain length on flux-determining properties of barrier and diffusant.
    Flynn GL; Yalkowsky SH
    J Pharm Sci; 1972 Jun; 61(6):838-52. PubMed ID: 5046096
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of DPPC monolayers with soluble surfactants: electrostatic effects of membrane perturbants.
    McConlogue CW; Malamud D; Vanderlick TK
    Biochim Biophys Acta; 1998 Jun; 1372(1):124-34. PubMed ID: 9651502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coupling of solute fluxes in membranes.
    Galey WR; Van Bruggen JT
    J Gen Physiol; 1970 Feb; 55(2):220-42. PubMed ID: 5413079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.