These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 5429630)
1. The metabolism of quinate by Acinetobacter calco-aceticus. Tresguerres ME; De Torrontegui G; Cánovas JL Arch Mikrobiol; 1970; 70(2):110-8. PubMed ID: 5429630 [No Abstract] [Full Text] [Related]
2. Quinate metabolism in Pseudomonas aeruginosa. Ingledew WM; Tai CC Can J Microbiol; 1972 Dec; 18(12):1817-24. PubMed ID: 4630966 [No Abstract] [Full Text] [Related]
3. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella. Control of quinate oxidation by protocatechuate. Tresguerres ME; de Torrontegui G; Ingledew WM; Cánovas JL Eur J Biochem; 1970 Jul; 14(3):445-50. PubMed ID: 5479375 [No Abstract] [Full Text] [Related]
4. Genetical and biochemical evidence for further interrelationships between the polyaromatic synthetic and the quinate-shikimate catabolic pathways in Neurospora crassa. Case ME; Giles NH; Doy CH Genetics; 1972 Jul; 71(3):337-48. PubMed ID: 4261015 [No Abstract] [Full Text] [Related]
5. The role of quinate and shikimate in the metabolism of lactobacilli. Whiting GC; Coggins RA Antonie Van Leeuwenhoek; 1971; 37(1):33-49. PubMed ID: 5313511 [No Abstract] [Full Text] [Related]
6. Metabolism of shikimate and quinate by Aspergillus niger and its regulation. Cain RB Biochem J; 1972 Apr; 127(2):15P-16P. PubMed ID: 5076648 [No Abstract] [Full Text] [Related]
8. Direct induction in wild-type Neurospora crassa of mutants (qa-1 c ) constitutive for the catabolism of quinate and shikimate. Partridge CW; Case ME; Giles NH Genetics; 1972 Nov; 72(3):411-7. PubMed ID: 4264707 [TBL] [Abstract][Full Text] [Related]
9. The oxidation of D-quinate and related acids by Acetomonas oxydans. Whiting GC; Coggins RA Biochem J; 1967 Jan; 102(1):283-93. PubMed ID: 6030289 [TBL] [Abstract][Full Text] [Related]
10. The branchpoint of pyocyanine biosynthesis. Longley RP; Halliwell JE; Campbell JJ; Ingledew WM Can J Microbiol; 1972 Sep; 18(9):1357-63. PubMed ID: 4627194 [No Abstract] [Full Text] [Related]
11. (-)-3t,4t-Dihydroxycyclohexane-1c-carboxylate, a new quinate metabolite of Lactobacillus plantarum. Whiting GC; Coggins RA J Sci Food Agric; 1973 Aug; 24(8):897-904. PubMed ID: 4731349 [No Abstract] [Full Text] [Related]
12. The inducible quinate-shikimate catabolic pathway in Neurospora crassa: genetic organization. Chaleff RS J Gen Microbiol; 1974 Apr; 81(2):337-55. PubMed ID: 4275708 [No Abstract] [Full Text] [Related]
13. Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein. van Kleef MA; Duine JA Arch Microbiol; 1988 May; 150(1):32-6. PubMed ID: 3044290 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 2. The role of protocatechuate as inducer. Cánovas JL; Wheelis ML; Stanier RY Eur J Biochem; 1968 Jan; 3(3):293-304. PubMed ID: 5645525 [No Abstract] [Full Text] [Related]
15. The inducible quinate-shikimate catabolic pathway in Neurospora crassa: induction and regulation of enzyme synthesis. Chaleff RS J Gen Microbiol; 1974 Apr; 81(2):357-72. PubMed ID: 4275849 [No Abstract] [Full Text] [Related]
16. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria. Adachi O; Ano Y; Toyama H; Matsushita K Biosci Biotechnol Biochem; 2006 Oct; 70(10):2579-82. PubMed ID: 17031026 [TBL] [Abstract][Full Text] [Related]
17. The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects. Hawkins AR; Lamb HK; Moore JD; Charles IG; Roberts CF J Gen Microbiol; 1993 Dec; 139(12):2891-9. PubMed ID: 8126417 [No Abstract] [Full Text] [Related]
18. The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS- Strain of Escherichia coli. García S; Flores N; De Anda R; Hernández G; Gosset G; Bolívar F; Escalante A J Mol Microbiol Biotechnol; 2017; 27(1):11-21. PubMed ID: 27855390 [TBL] [Abstract][Full Text] [Related]
19. Quantitative investigation of the hippuric acid formation in the rat after administration of some possible aromatic and hydroaromatic precursors. Teuchy H; Quatacker J; Wolf G; Van Sumere CF Arch Int Physiol Biochim; 1971 Aug; 79(3):573-87. PubMed ID: 4107876 [No Abstract] [Full Text] [Related]
20. In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. Lamb HK; Bagshaw CR; Hawkins AR Mol Gen Genet; 1991 Jun; 227(2):187-96. PubMed ID: 1648168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]