BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 5429723)

  • 1. Transport and retention of K+ and other metabolites in a marine pseudomonad and their relation to the mechanism of optical effects.
    Matula TI; Srivastava VS; Wong P; MacLeod RA
    J Bacteriol; 1970 Jun; 102(3):790-6. PubMed ID: 5429723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K plus-dependent deplasmolysis of a marine pseudomonad plasmolyzed in a hypotonic solution.
    Thompson J; Costerton JW; MacLeon RA
    J Bacteriol; 1970 Jun; 102(3):843-54. PubMed ID: 4914083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium transport and the relationship between intracellular potassium concentration and amino acid uptake by cells of a marine pseudomonad.
    Thompson J; MacLeod RA
    J Bacteriol; 1974 Nov; 120(2):598-603. PubMed ID: 4455685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and comparative transport capacity of cells, mureinoplasts, and true protoplasts of a gram-negative bacterium.
    De Voe IW; Thompson J; Costerton JW; MacLeod RA
    J Bacteriol; 1970 Mar; 101(3):1014-26. PubMed ID: 4908775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of optical effects in suspensions of a marine pseudomonad.
    Matula TI; MacLeod RA
    J Bacteriol; 1969 Oct; 100(1):403-10. PubMed ID: 5344103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functions of Na+ and K+ in the active transport of -aminoisobutyric acid in a marine pseudomonad.
    Thompson J; MacLeod RA
    J Biol Chem; 1971 Jun; 246(12):4066-74. PubMed ID: 5561475
    [No Abstract]   [Full Text] [Related]  

  • 7. Specific electron donor-energized transport of alpha-aminoisobutyric acid and K+ into intact cells of a marine pseudomonad.
    Thompson J; MacLeod RA
    J Bacteriol; 1974 Mar; 117(3):1055-64. PubMed ID: 4360537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NUTRITION AND METABOLISM OF MARINE BACTERIA. XIII. INTRACELLULAR CONCENTRATIONS OF SODIUM AND POTASSIUM IONS IN A MARINE PSEUDOMONAD.
    TAKACS FP; MATULA TI; MACLEOD RA
    J Bacteriol; 1964 Mar; 87(3):510-8. PubMed ID: 14129666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and morphological effects of phenethyl alcohol upon a gram-negative marine pseudomonad.
    Thompson J; DeVoe IW
    Can J Microbiol; 1972 Jun; 18(6):841-52. PubMed ID: 4556100
    [No Abstract]   [Full Text] [Related]  

  • 10. Roles of Na+ and K+ in alpha-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus.
    Tokuda H; Sugasawa M; Unemoto T
    J Biol Chem; 1982 Jan; 257(2):788-94. PubMed ID: 7054182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+ and K+ gradients and alpha-aminoisobutyric acid transport in a marine pseudomonad.
    Thompson J; MacLeod RA
    J Biol Chem; 1973 Oct; 248(20):7106-11. PubMed ID: 4743515
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetics of Naplus-dependent amino acid transport using cells and membrane vesicles of a marine pseudomonad.
    Sprott GD; Drozdowski JP; Martin EL; MacLeod RA
    Can J Microbiol; 1975 Jan; 21(1):43-50. PubMed ID: 1116038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrition and metabolism of marine bacteria. XV. Relation of Na+-activated transport to the Na+ requirement of a marine pseudomonad for growth.
    Drapeau GR; Matula TI; MacLeod RA
    J Bacteriol; 1966 Jul; 92(1):63-71. PubMed ID: 5941284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrition and metabolism of marine bacteria. XVII. Ion-dependent retention of alpha-aminoisobutyric acid and its relation to Na+ dependent transport in a marine pseudomonad.
    Wong PT; Thompson J; MacLeod RA
    J Biol Chem; 1969 Feb; 244(3):1016-25. PubMed ID: 5769176
    [No Abstract]   [Full Text] [Related]  

  • 15. Nutrition and metabolism of marine bacteria. XVI. Formation of protoplasts, spheroplasts, and related forms from a gram-negative marine bacterium.
    Costerton JW; Forsberg C; Matula TI; Buckmire FL; MacLeod RA
    J Bacteriol; 1967 Nov; 94(5):1764-77. PubMed ID: 4965199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmotic effects of membrane permeability in a marine bacterium.
    MacLeod RA; Goodbody M; Thompson J
    J Bacteriol; 1978 Mar; 133(3):1135-43. PubMed ID: 641005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The osmotically sensitive potassium and sodium compartments of synaptosomes.
    Marchbanks RM
    Biochem J; 1967 Jul; 104(1):148-57. PubMed ID: 6035507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical localization of alkaline phosphatase in the cell wall of a marine pseudomonad.
    Thompson LM; MacLeod RA
    J Bacteriol; 1974 Feb; 117(2):819-25. PubMed ID: 4811547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the release at low salt concentration of a lipid-protein-carbohydrate complex from isolated envelopes and whole cells of a marine pseudomonad.
    Buckmire FL; MacLeod RA
    Can J Microbiol; 1971 May; 17(5):713-23. PubMed ID: 4996653
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of growth at low Na+ concentrations on the capacity of a marine bacterium to establish ion gradients and transport alpha-aminoisobutyric acid.
    Gow JA; MacLeod RA
    Can J Microbiol; 1981 Mar; 27(3):358-63. PubMed ID: 7237282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.