These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5431369)

  • 1. Exercise-induced increase in the capacity of skeletal muscle to oxidize palmitate.
    Molé PA; Holloszy JO
    Proc Soc Exp Biol Med; 1970 Jul; 134(3):789-92. PubMed ID: 5431369
    [No Abstract]   [Full Text] [Related]  

  • 2. Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise.
    Baldwin KM; Klinkerfuss GH; Terjung RL; Molé PA; Holloszy JO
    Am J Physiol; 1972 Feb; 222(2):373-8. PubMed ID: 4333578
    [No Abstract]   [Full Text] [Related]  

  • 3. Adaptation of muscle to exercise. Increase in levels of palmityl Coa synthetase, carnitine palmityltransferase, and palmityl Coa dehydrogenase, and in the capacity to oxidize fatty acids.
    Molé PA; Oscai LB; Holloszy JO
    J Clin Invest; 1971 Nov; 50(11):2323-30. PubMed ID: 5096516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic adaptations in skeletal muscle of streptozotocin-diabetic rats following exercise training.
    Ianuzzo CD; Lesser M; Battista F
    Biochem Biophys Res Commun; 1974 May; 58(1):107-11. PubMed ID: 4364612
    [No Abstract]   [Full Text] [Related]  

  • 5. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise.
    Holloszy JO; Oscai LB; Don IJ; Molé PA
    Biochem Biophys Res Commun; 1970 Sep; 40(6):1368-73. PubMed ID: 4327015
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of endurance training on the capacity of red and white skeletal muscle of mouse to oxidize carboxyl-14C-labelled palmitate.
    Salminen A; Vihko V; Pilström L
    Acta Physiol Scand; 1977 Nov; 101(3):318-28. PubMed ID: 202144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid oxidation, citric acid cycle activity, and morphology of mitochondria in diabetic rat liver.
    Harano Y; DePalma RG; Miller M
    Proc Soc Exp Biol Med; 1969 Jul; 131(3):913-7. PubMed ID: 5791810
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of exercise, training, and diet on muscle citric acid cycle enzyme activity.
    Dohm GL; Huston RL; Askew EW; Fleshood HL
    Can J Biochem; 1973 Jun; 51(6):849-54. PubMed ID: 4352090
    [No Abstract]   [Full Text] [Related]  

  • 9. Overloaded skeletal muscles of a nonhuman primate (Galago senegalensis).
    Edgerton VR; Barnard RJ; Peter JB; Gillespie CA; Simpson DR
    Exp Neurol; 1972 Nov; 37(2):322-39. PubMed ID: 4404704
    [No Abstract]   [Full Text] [Related]  

  • 10. Kinetic analysis of the oxidation of palmitate-1-14C in man during prolonged heavy muscular exercise.
    Havel RJ; Ekelund LG; Holmgren A
    J Lipid Res; 1967 Jul; 8(4):366-73. PubMed ID: 6033603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymes of beta-oxidation and their function during development of Ascaris lumbricoides eggs.
    Ward CW; Fairbairn D
    Dev Biol; 1970 Jun; 22(2):366-87. PubMed ID: 5424984
    [No Abstract]   [Full Text] [Related]  

  • 12. Exercise-induced adaptive increase in rate of oxidation of beta-hydroxybutyrate by skeletal muscle.
    Winder WW; Baldwin KM; Holloszy JO
    Proc Soc Exp Biol Med; 1973 Jul; 143(3):753-5. PubMed ID: 4719462
    [No Abstract]   [Full Text] [Related]  

  • 13. Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol.
    Hagenfeldt L; Wahren J
    Scand J Clin Lab Invest; 1968; 21(3):263-76. PubMed ID: 5708695
    [No Abstract]   [Full Text] [Related]  

  • 14. Palmitate oxidation in suspended skeletal muscle fibers from the rat.
    Zuurveld JG; Veerkamp JH
    Biochim Biophys Acta; 1984 Oct; 796(1):34-41. PubMed ID: 6091770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise-induced increase in the capacity of rat skeletal muscle to oxidize ketones.
    Winder WW; Baldwin KM; Holloszy JO
    Can J Physiol Pharmacol; 1975 Feb; 53(1):86-91. PubMed ID: 237626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity.
    Baldwin KM; Herrick RE; McCue SA
    J Appl Physiol (1985); 1993 Dec; 75(6):2466-70. PubMed ID: 8125864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanide insensitive palmitate oxidation in skeletal muscle.
    Shumate JB; Choksi RM
    Biochem Biophys Res Commun; 1981 Jun; 100(3):978-81. PubMed ID: 7271814
    [No Abstract]   [Full Text] [Related]  

  • 18. [Correlation between histochemical and physiologic parameters: activity of dehydrogenases in striated skeletal muscles].
    Brotchi J; Mladenov S
    Arch Int Physiol Biochim; 1967 Jun; 75(3):543-5. PubMed ID: 4167726
    [No Abstract]   [Full Text] [Related]  

  • 19. Human forearm muscle metabolism during exercise. VII. FFA uptake and oxidation at different work intensities.
    Hagenfeldt L; Wahren J
    Scand J Clin Lab Invest; 1972 Dec; 30(4):429-36. PubMed ID: 4639648
    [No Abstract]   [Full Text] [Related]  

  • 20. Cytochrome c oxidase activity and fatty acid oxidation in various types of human muscle.
    Van Hinsbergh VW; Veerkamp JH; Van Moerkerk HT
    J Neurol Sci; 1980 Jul; 47(1):79-91. PubMed ID: 6251173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.