These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 543428)

  • 1. Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations.
    Skaugen E; Walløe L
    Acta Physiol Scand; 1979 Dec; 107(4):343-63. PubMed ID: 543428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Firing behaviour in stochastic nerve membrane models with different pore densities.
    Skaugen E
    Acta Physiol Scand; 1980 Jan; 108(1):49-60. PubMed ID: 6246718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Firing behaviour in nerve cell models with a two-state pore system.
    Skaugen E
    Acta Physiol Scand; 1980 Aug; 109(4):377-92. PubMed ID: 7468259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-file model for potassium transport in squid giant axon. Simulation of potassium currents at normal ionic concentrations.
    Kohler HH
    Biophys J; 1977 Aug; 19(2):125-40. PubMed ID: 880331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing.
    Rowat P
    Neural Comput; 2007 May; 19(5):1215-50. PubMed ID: 17381265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Time dependence of the reaction rate constant of potassium permeability of Ranvier's node membrane].
    Makovskiĭ VS
    Tsitologiia; 1975 Jan; 17(1):55-63. PubMed ID: 1118903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer evaluation of equations for predicting the potential across biological membranes.
    Rosenberg SA
    Biophys J; 1969 Apr; 9(4):500-9. PubMed ID: 5778183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solutions of the Hodgkin-Huxley equations modified for potassium accumulation in a periaxonal space.
    Adelman WJ; Fitzhugh R
    Fed Proc; 1975 Apr; 34(5):1322-9. PubMed ID: 1123087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The geometry of the Hodgkin-Huxley Model.
    Plant RE
    Comput Programs Biomed; 1976 Jul; 6(2):85-91. PubMed ID: 954417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic sensitivity analysis of noise-induced suppression of firing and giant variability of spiking in a Hodgkin-Huxley neuron model.
    Bashkirtseva I; Neiman AB; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052920. PubMed ID: 26066242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital computer solutions for excitation and propagation of the nerve impulse.
    Cooley JW; Dodge FA
    Biophys J; 1966 Sep; 6(5):583-99. PubMed ID: 5970564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulation for studying calcium dependent abnormalities in firing mechanism of molluscan neurones.
    Pongrácz F; Szente M
    Acta Physiol Acad Sci Hung; 1982; 60(4):189-203. PubMed ID: 6314740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model study on the influence of a slowly activating potassium conductance on repetitive firing patterns of muscle spindle primary endings.
    Otten E; Hulliger M; Scheepstra KA
    J Theor Biol; 1995 Mar; 173(1):67-78. PubMed ID: 7739213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of delayed (K+) channels to the time-dependent clamping function in squid giant axon. I. Ascending ramps.
    Starzak ME; Senft JP; Starzak RJ
    Physiol Chem Phys; 1977; 9(6):513-32. PubMed ID: 614592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of an exponentially decaying threshold on the firing statistics of a stochastic integrate-and-fire neuron.
    Lindner B; Longtin A
    J Theor Biol; 2005 Feb; 232(4):505-21. PubMed ID: 15588632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike trains in a stochastic Hodgkin-Huxley system.
    Henry C T
    Biosystems; 2005 Apr; 80(1):25-36. PubMed ID: 15740832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The singularly perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity.
    Awiszus F; Dehnhardt J; Funke T
    J Math Biol; 1990; 28(2):177-95. PubMed ID: 2319211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation properties of the squid axon membrane and model systems with current stimulation. Statistical evaluation and comparison.
    Fohlmeister JF; Adelman WJ; Poppele RE
    Biophys J; 1980 Apr; 30(1):79-97. PubMed ID: 7260270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of spiking activity for a stochastic spatial neuron model: effects of spatial distribution of input on bimodality and CV of the ISI distribution.
    Tuckwell HC
    Math Biosci; 2007 Jun; 207(2):246-60. PubMed ID: 17337282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. II. Slow relaxation of the sodium current].
    Pastushenko VF; Chizmadzhev IuA; Markin VS
    Biofizika; 1975; 20(5):880-6. PubMed ID: 1203276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.