These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5435275)

  • 1. Gas chromatography and mass spectrometry of trimethylsilyl sugar phosphates.
    Zinbo M; Sherman WR
    J Am Chem Soc; 1970 Apr; 92(7):2105-14. PubMed ID: 5435275
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of the trimethylsilyl derivatives of sugar phosphates and related compounds by gas chromatography and gas chromatography-mass spectrometry.
    Harvey DJ; Horning MG
    J Chromatogr; 1973 Feb; 76(1):51-62. PubMed ID: 4686951
    [No Abstract]   [Full Text] [Related]  

  • 3. Gas chromatography of sugar phosphates and sugar nucleotides.
    Eisenberg F; Bolden AH
    Anal Biochem; 1969 May; 29(2):284-92. PubMed ID: 5792565
    [No Abstract]   [Full Text] [Related]  

  • 4. Extraction, separation, and quantitative estimation of soluble nucleotides and sugar phosphates in plant tissues.
    Cole CV; Ross C
    Anal Biochem; 1966 Dec; 17(3):526-39. PubMed ID: 5965986
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism of D-ribose1-C14 and C14-labeled d-gluconate in an enzyme system of the genus Propionibacterium.
    STJERNHOLM RL; FLANDERS F
    J Bacteriol; 1962 Sep; 84(3):563-8. PubMed ID: 13984204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoglucomutase kinetics with the phosphates of fructose, glucose, mannose, ribose, and galactose.
    Lowry OH; Passonneau JV
    J Biol Chem; 1969 Feb; 244(3):910-6. PubMed ID: 5769188
    [No Abstract]   [Full Text] [Related]  

  • 7. Changes in sugar phosphate and lactate concentration in trawled cod (Gadus callarias) muscle during frozen storage.
    Burt JR
    J Sci Food Agric; 1971 Oct; 22(10):536-9. PubMed ID: 5158798
    [No Abstract]   [Full Text] [Related]  

  • 8. Gas chromatography of sugar phosphate.
    Hashizume T; Sasaki Y
    Anal Biochem; 1966 May; 15(2):346-50. PubMed ID: 5961069
    [No Abstract]   [Full Text] [Related]  

  • 9. [Some peculiarities in glucose-6-phosphate conversion into fructose by enzymes of hemolyzed erythrocytes after sugar loading].
    Bachinskiĭ PP
    Vopr Med Khim; 1969; 15(3):256-61. PubMed ID: 5805157
    [No Abstract]   [Full Text] [Related]  

  • 10. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. II. Erythrose 4-phosphate as intermediate and rate regulator in the interconversion of ribose 5-phosphate and hexose 6-phosphate.
    DISCHE Z; IGALS D
    Arch Biochem Biophys; 1961 May; 93():201-10. PubMed ID: 13723069
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of changes in brain metabolism on levels of pentose phosphate pathway intermediates.
    Kauffman FC; Brown JG; Passonneau JV; Lowry OH
    J Biol Chem; 1969 Jul; 244(13):3647-53. PubMed ID: 5794230
    [No Abstract]   [Full Text] [Related]  

  • 12. GAS CHROMATOGRAPHY OF SUGAR PHOSPHATES.
    WELLS WW; KATAGI T; BENTLEY R; SWEELEY CC
    Biochim Biophys Acta; 1964 Feb; 82():408-11. PubMed ID: 14123578
    [No Abstract]   [Full Text] [Related]  

  • 13. The dissimilation of glucose and gluconate by Acetobacter xylinum. 1. The origin and the fate of triose phosphate.
    White GA; Wang CH
    Biochem J; 1964 Feb; 90(2):408-23. PubMed ID: 4220768
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. 1. Sedohetulose and triose phosphates as intermediates in the conversion of ribose 5-phosphate to hexose 6-phosphate in human hemolyzates.
    DISCHE Z; SHIGEURA HT; LANDSBERG E
    Arch Biochem Biophys; 1960 Jul; 89():123-33. PubMed ID: 13816919
    [No Abstract]   [Full Text] [Related]  

  • 15. Isotachophoresis in two-dimensional combination with zone electrophoresis for the concentration and separation of glucose metabolites.
    Vestermark A; Sjödin B
    J Chromatogr; 1972 Nov; 73(1):211-8. PubMed ID: 5081642
    [No Abstract]   [Full Text] [Related]  

  • 16. [Simultaneous analysis of hexoses, of trioses and of their phosphate esters].
    HERS HG; BEAUFAYS H; DE DUVE C
    Biochim Biophys Acta; 1953 Jul; 11(3):416-26. PubMed ID: 13093748
    [No Abstract]   [Full Text] [Related]  

  • 17. [Enzymatic synthesis of (5-3H)D-fructose-1,6-bisphosphate, (5-3H)D-fructose-6-phosphate, (5-3H)D-glucose-6-phosphate and (5-3H)D-glucose].
    Hauska G; Kindl H; Hoffmann-Ostenhof O
    Hoppe Seylers Z Physiol Chem; 1967 Oct; 348(10):1273-6. PubMed ID: 4296641
    [No Abstract]   [Full Text] [Related]  

  • 18. SYNTHESIS OF SOME ALDOSE 2-PHOSPHATES.
    PIRAS R
    Arch Biochem Biophys; 1963 Nov; 103():291-2. PubMed ID: 14084595
    [No Abstract]   [Full Text] [Related]  

  • 19. An enzymic "sweep" technique for the chromatographic resolution of 14C-labeled brain metabolites.
    Duffy TE; O'Neill JJ
    Anal Biochem; 1968 Jul; 24(1):132-40. PubMed ID: 5665193
    [No Abstract]   [Full Text] [Related]  

  • 20. SEPARATION, IDENTIFICATION, AND QUANTITATIVE DETERMINATION OF P 32-LABELED PHOSPHATE ESTERS FROM ERYTHROCYTES.
    VANDERHEIDEN BS
    Anal Biochem; 1964 May; 8():1-19. PubMed ID: 14167270
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.