These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 5435295)

  • 21. An electron-microscopic study of centrioles in differentiating motor neuroblasts.
    Lyser KM
    J Embryol Exp Morphol; 1968 Nov; 20(3):343-54. PubMed ID: 5728203
    [No Abstract]   [Full Text] [Related]  

  • 22. [Effect of a return of motor neurons to spontaneous activity on the multi-innervation of muscular fibers induced in chick embryo by chronic slow-rhythm spinal cord stimulation].
    Renaud D; Le Douarin G
    C R Seances Acad Sci III; 1981 Dec; 293(14):751-3. PubMed ID: 6802449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of surrounding tissue on the morphogenesis of spinal cord in chick embryo].
    Jacob HJ; Christ B; Jacob M
    Verh Anat Ges; 1975; 69():271-4. PubMed ID: 1229289
    [No Abstract]   [Full Text] [Related]  

  • 25. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos.
    Mészár Z; Felszeghy S; Veress G; Matesz K; Székely G; Módis L
    Brain Res Bull; 2008 Mar; 75(2-4):414-8. PubMed ID: 18331908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The development of motor neurons of the lateral motor column of chick embryo spinal cord and the naturally occurring cell death. II. Prevention of naturally occurring cell death with neuromuscular blocking agents (author's transl)].
    Doi H
    Fukuoka Igaku Zasshi; 1981 Jul; 72(7):414-22. PubMed ID: 7308967
    [No Abstract]   [Full Text] [Related]  

  • 28. [Formation and organization of Nissl bodies in the transformation of medulloblasts to neurocytes of the spinal cord of the chicken embryo, in in vitro culture].
    Sensenbrenner M; Courtey B; May RM
    Arch Anat Microsc Morphol Exp; 1966; 55(2):107-17. PubMed ID: 5925126
    [No Abstract]   [Full Text] [Related]  

  • 29. An experimental analysis of the determination of cell patterns in the spinal cord of the chick embryo.
    Narayanan CH
    J Comp Neurol; 1970 Jun; 139(2):189-98. PubMed ID: 5422530
    [No Abstract]   [Full Text] [Related]  

  • 30. Agrin mRNA variants are differentially regulated in developing chick embryo spinal cord and sensory ganglia.
    Ma E; Morgan R; Godfrey EW
    J Neurobiol; 1995 Apr; 26(4):585-97. PubMed ID: 7602321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Close spatial-temporal relationship between islet-1-expressing cells and growing primary afferent axons in the dorsal spinal cord of chick embryo.
    Shiga T; Oppenheim RW
    J Comp Neurol; 1999 Mar; 405(3):388-93. PubMed ID: 10076933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histological and ultrastructural observations of tail bud formation in the chick embryo.
    Schoenwolf GC
    Anat Rec; 1979 Jan; 193(1):131-47. PubMed ID: 760594
    [No Abstract]   [Full Text] [Related]  

  • 33. Histochemical evidence of glycogen content in the dorsal ependymal lining of the spinal cord of chick embryo.
    Bosch R; Buschiazzo HO; De Buschiazzo PM; Rodríguez RR
    Acta Physiol Lat Am; 1968; 18(2):110-3. PubMed ID: 5703657
    [No Abstract]   [Full Text] [Related]  

  • 34. Developmental expression of nicotinic receptors in the chick and human spinal cord.
    Keiger CJ; Prevette D; Conroy WG; Oppenheim RW
    J Comp Neurol; 2003 Jan; 455(1):86-99. PubMed ID: 12454998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of specific populations of interneurons in the ventral horn of the embryonic chick lumbosacral spinal cord.
    Antal M; Polgár E; Berki A; Birinyi A; Puskár Z
    Eur J Morphol; 1994 Aug; 32(2-4):201-6. PubMed ID: 7803167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dorsal horn of the avian spinal cord, a re-examination.
    Martin AH; Brinkman R
    Experientia; 1970 Aug; 26(8):887-9. PubMed ID: 5452027
    [No Abstract]   [Full Text] [Related]  

  • 37. Inhibitory effects of ventral signals on the development of Brn-3.0-expressing neurons in the dorsal spinal cord.
    Fedtsova N; Turner EE
    Dev Biol; 1997 Oct; 190(1):18-31. PubMed ID: 9331328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes.
    Momose-Sato Y; Mochida H; Kinoshita M
    Eur J Neurosci; 2009 Jan; 29(1):1-13. PubMed ID: 19077122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Nuclear proteins and nucleic acids during differentiation of neurons in the spinal cord ganglia, spinal cord and tectum opticum in chickens. Cytophotometric study with computation programs].
    Olenev SN
    Arkh Anat Gistol Embriol; 1982 Feb; 82(2):31-9. PubMed ID: 6177303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.