BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 5435692)

  • 1. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate.
    Rognstad R; Katz J
    Biochem J; 1970 Feb; 116(3):483-91. PubMed ID: 5435692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gluconeogenesis in the kidney cortex. Flow of malate between compartments.
    Rognstad R
    Biochem J; 1970 Feb; 116(3):493-502. PubMed ID: 4314166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW
    J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the malate--aspartate shuttle in renal sodium transport in the rat.
    Ross B; Silva P; Bullock S
    Clin Sci (Lond); 1981 Apr; 60(4):419-26. PubMed ID: 7249531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the stimulation of gluconeogenesis by L-lysine in isolated rat kidney cortex tubules.
    Friedrichs D
    Biochim Biophys Acta; 1975 Jun; 392(2):255-70. PubMed ID: 1131363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes.
    Cheeseman AJ; Clark JB
    J Neurochem; 1988 May; 50(5):1559-65. PubMed ID: 3361310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes.
    Cornell NW; Lund P; Krebs HA
    Biochem J; 1974 Aug; 142(2):327-37. PubMed ID: 4155292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes.
    Berry MN; Phillips JW; Gregory RB; Grivell AR; Wallace PG
    Biochim Biophys Acta; 1992 Sep; 1136(3):223-30. PubMed ID: 1520699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of beta-methylene-D,L-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism.
    Fitzpatrick SM; Cooper AJ; Duffy TE
    J Neurochem; 1983 Nov; 41(5):1370-83. PubMed ID: 6619872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The involvement of pyruvate cycling in the metabolism of aspartate and glycerate by the perfused rat kidney.
    Scaduto RC; Davis EJ
    Biochem J; 1986 Aug; 237(3):691-8. PubMed ID: 3800911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of extramitochondrial reducing power in gluconeogenesis.
    Krebs HA; Gascoyne T; Notton BM
    Biochem J; 1967 Jan; 102(1):275-82. PubMed ID: 4291560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of the malate-aspartate shuttle in various tumor types.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1976 Apr; 36(4):1392-6. PubMed ID: 177206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of lactate glucogneogenesis in rat kidney by dichloroacetate.
    Lacey JH; Randle PJ
    Biochem J; 1978 Mar; 170(3):551-60. PubMed ID: 646800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion.
    MacDonald MJ
    J Biol Chem; 1995 Aug; 270(34):20051-8. PubMed ID: 7650022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The malate/aspartate shuttle and pyruvate kinase as targets involved in the stimulation of gluconeogenesis by phenylephrine.
    Leverve XM; Verhoeven AJ; Groen AK; Meijer AJ; Tager JM
    Eur J Biochem; 1986 Mar; 155(3):551-6. PubMed ID: 3956499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrelations between ureogenesis and gluconeogenesis in isolated hepatocytes. The role of antion transport and the competition for energy.
    Wojtczak AB; WaƂajtys-Rode EI; Geelen MJ
    Biochem J; 1978 Feb; 170(2):379-385. PubMed ID: 637851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1978 Apr; 172(1):155-62. PubMed ID: 656069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxaloacetate permeation in rat kidney mitochondria: pyruvate/oxaloacetate and malate/oxaloacetate translocators.
    Passarella S; Atlante A; Quagliariello E
    Biochem Biophys Res Commun; 1985 May; 129(1):1-10. PubMed ID: 4004869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malate exchange between the cytosol and mitochondria.
    Rognstad R; Katz J
    Biochem J; 1973 Feb; 132(2):349-52. PubMed ID: 4725043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of regulation of gluconeogenesis and the supply of cytosolic reducing equivalents for lactate formation in rat kidney-cortical-tubule fragments incubated with pyruvate.
    Saggerson ED
    Biochem J; 1978 Jul; 174(1):131-42. PubMed ID: 212019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.