These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 5436564)

  • 1. Induction of chlamydospore formation in Fusarium solani by soil bacteria.
    Ford EJ; Gold AH; Snyder WC
    Phytopathology; 1970 Mar; 60(3):479-84. PubMed ID: 5436564
    [No Abstract]   [Full Text] [Related]  

  • 2. Ultrastructure of forming and dormant chlamydospores of Fusarium solani in soil.
    Van Eck WH
    Can J Microbiol; 1976 Nov; 22(11):1634-42. PubMed ID: 974911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of low pH, carbon and inorganic nitrogen source use in chlamydospore formation by Fusarium solani.
    Griffin GJ
    Can J Microbiol; 1976 Sep; 22(9):1381-9. PubMed ID: 10071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suitability of membrane-filter techniques to study the ultrastructure of Fusarium solani in soil.
    Van Eck WH
    Can J Microbiol; 1976 Nov; 22(11):1628-33. PubMed ID: 974910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydospore induction in pure culture in Fusarium solani.
    Cochrane VW; Cochrane JC
    Mycologia; 1971; 63(3):462-77. PubMed ID: 4935359
    [No Abstract]   [Full Text] [Related]  

  • 6. Lipid body content and persistence of chlamydospores of Fusarium solani in soil.
    van Eck WH
    Can J Microbiol; 1978 Jan; 24(1):65-9. PubMed ID: 754878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Fusarium moniliforme var. subglutinans, the causal agent of pine pitch canker, by the soil bacterium Arthrobacter sp.
    Barrows-Broaddus J; Kerr TJ
    Can J Microbiol; 1981 Jan; 27(1):20-7. PubMed ID: 7214230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MICROORGANISMS IN THE ROOT ZONE IN RELATION TO SOIL MOISTURE.
    PETERSON EA; ROUATT JW; KATZNELSON H
    Can J Microbiol; 1965 Jun; 11():483-95. PubMed ID: 14346123
    [No Abstract]   [Full Text] [Related]  

  • 9. Soil bacteria and chlamydospore formation in Fusarium solani.
    VENKAT RAM CS
    Nature; 1952 Nov; 170(4334):889. PubMed ID: 13013244
    [No Abstract]   [Full Text] [Related]  

  • 10. Physiological properties and enzymatic activity of an Arthrobacter capable of lysing Fusarium sp.
    Szajer C; Koths JS
    Acta Microbiol Pol B; 1973; 5(2):81-6. PubMed ID: 4723721
    [No Abstract]   [Full Text] [Related]  

  • 11. Modification of the exogenous carbon and nitrogen requirements for chlamydospore germination of Fusarium solani by contact with soil.
    Griffin GJ
    Can J Microbiol; 1973 Aug; 19(8):999-1005. PubMed ID: 4752344
    [No Abstract]   [Full Text] [Related]  

  • 12. Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation.
    Thion C; Cébron A; Beguiristain T; Leyval C
    Biodegradation; 2013 Jul; 24(4):569-81. PubMed ID: 23543362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench.
    Agarwal M; Dheeman S; Dubey RC; Kumar P; Maheshwari DK; Bajpai VK
    Microbiol Res; 2017 Dec; 205():40-47. PubMed ID: 28942843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological control of Fusarium oxysporum, the causal agent of onion wilt by antagonistic bacteria.
    Sharifi Tehrani A; Ramezani M
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):543-7. PubMed ID: 15151288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Plants affecting the phytopathogenic fungi. IV. Fusarium solani f. pisi (Jones) Snyd. et Hans].
    Seidel D
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(5):446-9. PubMed ID: 5535932
    [No Abstract]   [Full Text] [Related]  

  • 16. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere.
    Liu J; Wang X; Zhang T; Li X
    Microbiol Res; 2017 Dec; 205():118-124. PubMed ID: 28942837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon and nitrogen requirements for macroconidial germination of Fusarium solani: dependence on conidial density.
    Griffin GJ
    Can J Microbiol; 1970 Aug; 16(8):733-40. PubMed ID: 5484061
    [No Abstract]   [Full Text] [Related]  

  • 18. Rhizobacteria and their potential to control Fusarium verticillioides: effect of maize bacterisation and inoculum density.
    Cavaglieri LR; Andrés L; Ibáñez M; Etcheverry MG
    Antonie Van Leeuwenhoek; 2005 Apr; 87(3):179-87. PubMed ID: 15803383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydospore development in the absence of protein synthesis in Fusarium solani.
    Cochrane VW; Cochrane JC
    Dev Biol; 1970 Nov; 23(3):345-54. PubMed ID: 5485812
    [No Abstract]   [Full Text] [Related]  

  • 20. Lipid metabolism and benzo[a]pyrene degradation by Fusarium solani: an unexplored potential.
    Delsarte I; Rafin C; Mrad F; Veignie E
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):12177-12182. PubMed ID: 29392603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.