These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 5437)

  • 21. Properties of a reconstituted calcium pump.
    Knowles AF; Racker E
    J Biol Chem; 1975 May; 250(9):3538-44. PubMed ID: 235551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme.
    Hanel AM; Jencks WP
    Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the Ca2+ concentration gradient in the adenosine 5'-triphosphate-inorganic phosphate exchange catalyzed by sarcoplasmic reticulum.
    de Meis L; Costa Carvalho Mda G
    Biochemistry; 1974 Nov; 13(24):5032-8. PubMed ID: 4433536
    [No Abstract]   [Full Text] [Related]  

  • 24. There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase.
    Myung J; Jencks WP
    Biochemistry; 1995 Mar; 34(9):3077-83. PubMed ID: 7893720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane gradient and ligand-induced mechanisms of adenosine 5'-triphosphate synthesis by sarcoplasmic reticulum adenosinetriphosphatase.
    Fernandez-Belda F; Inesi G
    Biochemistry; 1986 Dec; 25(24):8083-9. PubMed ID: 2948567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical pump currents generated by the Ca2+-ATPase of sarcoplasmic reticulum vesicles adsorbed on black lipid membranes.
    Hartung K; Grell E; Hasselbach W; Bamberg E
    Biochim Biophys Acta; 1987 Jun; 900(2):209-20. PubMed ID: 2954585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation.
    Hawkins C; Xu A; Narayanan N
    Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of temperature on the reversal of the calcium ion pump in sarcoplasmic reticulum.
    Vale MG; Carvalho AP
    Biochem J; 1980 Feb; 186(2):461-7. PubMed ID: 7378062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. II. Kinetic properties of the phosphoenzyme formed at the steady state in high Mg2+ and low Ca2+ concentrations.
    Shigekawa M; Dougherty JP
    J Biol Chem; 1978 Mar; 253(5):1451-7. PubMed ID: 146711
    [No Abstract]   [Full Text] [Related]  

  • 30. ATP regulation of calcium transport in back-inhibited sarcoplasmic reticulum vesicles.
    de Meis L; Sorenson MM
    Biochim Biophys Acta; 1989 Sep; 984(3):373-8. PubMed ID: 2528377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles.
    Meissner G
    J Biol Chem; 1981 Jan; 256(2):636-43. PubMed ID: 7451464
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PH-induced changes in the reactions controlled by the low- and high-affinity Ca2+-binding sites in sarcoplasmic reticulum.
    Verjovski-Almeida S; de Meis L
    Biochemistry; 1977 Jan; 16(2):329-34. PubMed ID: 13812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for the uptake and release of Ca2+ by sarcoplasmic reticulum.
    Gould GW; McWhirter JM; East JM; Lee AG
    Biochem J; 1987 Aug; 245(3):739-49. PubMed ID: 2959279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of calcium transport of sarcoplasmic reticulum vesicles by the calcium complex of ethylene glycol bis(beta-aminoethyl ether)-N,N',-tetraacetic acid.
    Berman MC
    J Biol Chem; 1982 Feb; 257(4):1953-7. PubMed ID: 6460030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of adenosine diphosphate on Ca2+ fluxes and Ca2+ accumulation of sarcoplasmic reticulum.
    Lau YH
    Biochim Biophys Acta; 1983 May; 730(2):276-84. PubMed ID: 6221760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of adenosine triphosphate during release of intravesicular and membrane-bound calcium ions from passively loaded sarcoplasmic reticulum.
    Vale GP; Osório R; Castro E; Carvalho AP
    Biochem J; 1976 May; 156(2):239-44. PubMed ID: 821477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison between calcium transport and adenosine triphosphatase activity in membrane vesicles derived from rabbit kidney proximal tubules.
    Vieyra A; Nachbin L; de Dios-Abad E; Goldfeld M; Meyer-Fernandes JR; de Moraes L
    J Biol Chem; 1986 Mar; 261(9):4247-55. PubMed ID: 3005327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum.
    Meissner G
    Biochim Biophys Acta; 1973 Apr; 298(4):906-26. PubMed ID: 4269715
    [No Abstract]   [Full Text] [Related]  

  • 39. The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum.
    Sumbilla C; Lewis D; Hammerschmidt T; Inesi G
    J Biol Chem; 2002 Apr; 277(16):13900-6. PubMed ID: 11844792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mode of action of diethyl ether on ATP-dependent Ca2+ transport by sarcoplasmic reticulum vesicles.
    Salama G; Scarpa A
    Biochem Pharmacol; 1983 Nov; 32(22):3465-77. PubMed ID: 6316982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.