These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 5437)

  • 41. Calcium transport and release by the sarcoplasmic reticulum.
    Katz AM; Shigekawa M; Repke DI; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():205-12. PubMed ID: 22900
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum.
    Dupont Y
    Eur J Biochem; 1980 Aug; 109(1):231-8. PubMed ID: 6447598
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quercetin interaction with the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum.
    Shoshan V; MacLennan DH
    J Biol Chem; 1981 Jan; 256(2):887-92. PubMed ID: 6108961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside-triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic-reticulum vesicles.
    Waas W; Hasselbach W
    Eur J Biochem; 1981 Jun; 116(3):601-8. PubMed ID: 7262078
    [No Abstract]   [Full Text] [Related]  

  • 45. Ca2+ binding to sarcoplasmic reticulum ATPase phosphorylated by Pi reveals four thapsigargin-sensitive Ca2+ sites in the presence of ADP.
    Vieyra A; Mintz E; Lowe J; Guillain F
    Biochim Biophys Acta; 2004 Dec; 1667(2):103-13. PubMed ID: 15581845
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional characterization of reconstituted sarcoplasmic reticulum vesicles.
    Inesi G; Nakamoto R; Hymel L; Fleischer S
    J Biol Chem; 1983 Dec; 258(24):14804-9. PubMed ID: 6228550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of K+ on phosphorylation of the sarcoplasmic reticulum ATPase by either Pi or ATP.
    Chaloub RM; de Meis L
    J Biol Chem; 1980 Jul; 255(13):6168-72. PubMed ID: 6446554
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+-dependnet adenosine triphosphatase of sarcoplasmic reticulum.
    de Meis L; Tume RK
    Biochemistry; 1977 Oct; 16(20):4455-63. PubMed ID: 20933
    [No Abstract]   [Full Text] [Related]  

  • 49. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 50. The dependence on internal pH of Ca2+-fluxes across sarcoplasmic reticulum vesicular membranes.
    Fassold E; Hasselbach W
    Eur J Biochem; 1986 Jan; 154(1):7-14. PubMed ID: 3943528
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transient state kinetic effects of calcium ion on sarcoplasmic reticulum adenosine triphosphatase.
    Froehlich JP; Taylor EW
    J Biol Chem; 1976 Apr; 251(8):2307-15. PubMed ID: 131125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum.
    Narayanan N; Su N; Bedard P
    Biochim Biophys Acta; 1991 Nov; 1070(1):83-91. PubMed ID: 1836355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of ADP on the rate of acetyl phosphate hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum.
    Montero-Lomeli M; De Meis L
    Eur J Biochem; 1989 Dec; 186(1-2):339-42. PubMed ID: 2532131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of ATP synthesis catalyzed by the calcium pump of sarcoplasmic reticulum.
    Sande-Lemos MP; de Meis L
    J Biol Chem; 1988 Mar; 263(8):3795-8. PubMed ID: 2964443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Factors influencing calcium release from the ADP-sensitive phosphoenzyme intermediate of the sarcoplasmic reticulum ATPase.
    Wakabayashi S; Ogurusu T; Shigekawa M
    J Biol Chem; 1986 Jul; 261(21):9762-9. PubMed ID: 2942534
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of ionomycin on calcium fluxes in sarcoplasmic reticulum vesicles and liposomes.
    Beeler TJ; Jona I; Martonosi A
    J Biol Chem; 1979 Jul; 254(14):6229-31. PubMed ID: 156184
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of compound 48/80 on the Ca2+ release by reversal of the Ca2+ pump and by the Ca2+ channel of sarcoplasmic reticulum membranes.
    Vale MG
    Arch Biochem Biophys; 1990 Jun; 279(2):275-80. PubMed ID: 2161641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of medium inorganic phosphate-water exchange catalyzed by sarcoplasmic reticulum vesicles.
    Ariki M; Boyer PD
    Biochemistry; 1980 Apr; 19(9):2001-4. PubMed ID: 6445751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles.
    Heilmann C; Brdiczka D; Nickel E; Pette D
    Eur J Biochem; 1977 Dec; 81(2):211-22. PubMed ID: 145941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles.
    Beeler TJ
    J Biol Chem; 1980 Oct; 255(19):9156-61. PubMed ID: 6106021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.