These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 5439489)

  • 21. Ice nucleation temperature influences recovery of activity of a model protein after freeze drying.
    Cochran T; Nail SL
    J Pharm Sci; 2009 Sep; 98(9):3495-8. PubMed ID: 19492339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A survey of the different methods used. Experimental study on the application of some methods found suitable to our country.
    Shoukry I; el-Guindy N; el-Nashar H
    Bull Ophthalmol Soc Egypt; 1972; 65(69):55-86. PubMed ID: 4354257
    [No Abstract]   [Full Text] [Related]  

  • 23. Freezing of tissue-limits for the autoradiographic localization of diffusible substances.
    Frederik PM; Busing WM
    J Histochem Cytochem; 1979 Nov; 27(11):1520-3. PubMed ID: 512336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Controlled Nucleation of Ice Crystals on the Primary Drying Stage during Lyophilization.
    Kawasaki H; Shimanouchi T; Takahashi K; Kimura Y
    Chem Pharm Bull (Tokyo); 2018; 66(12):1122-1130. PubMed ID: 30504629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of controlled ice nucleation on the freeze-drying of pharmaceutical products: the secondary drying step.
    Oddone I; Barresi AA; Pisano R
    Int J Pharm; 2017 May; 524(1-2):134-140. PubMed ID: 28363858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro-computed tomography observation of sublimation interface and image analysis on sublimation process during freeze-drying.
    Xiao X; Tao LR; Hua TC
    Cryo Letters; 2007; 28(4):253-60. PubMed ID: 17962829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for direct hydrogen transfer during glyceraldehyde-3-phosphate dehydrogenase catalysis.
    Allison WS; Connors MJ; Parker DJ
    Biochem Biophys Res Commun; 1969 Feb; 34(4):503-10. PubMed ID: 4304840
    [No Abstract]   [Full Text] [Related]  

  • 29. Water catalysis of peptide hydrogen isotope exchange.
    Gregory RB; Crabo L; Percy AJ; Rosenberg A
    Biochemistry; 1983 Feb; 22(4):910-7. PubMed ID: 6838830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor.
    Roy ML; Pikal MJ
    J Parenter Sci Technol; 1989; 43(2):60-6. PubMed ID: 2709237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools.
    De Beer TR; Vercruysse P; Burggraeve A; Quinten T; Ouyang J; Zhang X; Vervaet C; Remon JP; Baeyens WR
    J Pharm Sci; 2009 Sep; 98(9):3430-46. PubMed ID: 19130604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The physico-chemical basis for the freeze-drying process.
    MacKenzie AP
    Dev Biol Stand; 1976 Oct; 36():51-67. PubMed ID: 1030437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.
    Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR
    J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Freeze-drying of histocompatibility typing sera.
    Perry VP; Kroener CA; Martin JL
    Dev Biol Stand; 1976 Oct; 36():349-53. PubMed ID: 1030433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tritium-hydrogen exchange of the cyclic peptide polymyxin B-1.
    Galardy RE; Craig LC; Printz MP
    Biochemistry; 1974 Apr; 13(8):1674-7. PubMed ID: 4364708
    [No Abstract]   [Full Text] [Related]  

  • 38. Simple sperm preservation by freeze-drying for conserving animal strains.
    Kaneko T
    Methods Mol Biol; 2015; 1239():317-29. PubMed ID: 25408416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Freeze-drying of lactic acid bacteria.
    Fonseca F; Cenard S; Passot S
    Methods Mol Biol; 2015; 1257():477-88. PubMed ID: 25428024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying.
    Oesterle J; Franks F; Auffret T
    Pharm Dev Technol; 1998 May; 3(2):175-83. PubMed ID: 9653754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.