These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 5440502)

  • 1. Energy costs of propelling wheelchair at various speeds: cardiac response and effect on steering accuracy.
    Hildebrandt G; Voight ED; Bahn D; Berendes B; Kröger J
    Arch Phys Med Rehabil; 1970 Mar; 51(3):131-6. PubMed ID: 5440502
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M; Lawrie AT; Hunter J; Warren PM
    Scand J Rehabil Med; 1990; 22(3):139-43. PubMed ID: 2244191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Workload and energy expenditure during wheelchair propelling.
    Stoboy H; Rich BW; Lee M
    Paraplegia; 1971 Feb; 8(4):223-30. PubMed ID: 5111932
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of an abdominal binder during wheelchair exercise.
    Kerk JK; Clifford PS; Snyder AC; Prieto TE; O'Hagan KP; Schot PK; Myklebust JB; Myklebust BM
    Med Sci Sports Exerc; 1995 Jun; 27(6):913-9. PubMed ID: 7658955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measures of energy expenditure and comfort in an ESP wheelchair: a controlled trial using hemiplegic users'.
    Mandy A; Lesley S
    Disabil Rehabil Assist Technol; 2009 May; 4(3):137-42. PubMed ID: 19241200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of power output estimation for wheelchair locomotion.
    Glaser RM; Collins SR
    Am J Phys Med; 1981 Aug; 60(4):180-9. PubMed ID: 7270661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise program for wheelchair activity.
    Glaser RM; Sawka MN; Durbin RJ; Foley DM; Suryaprasad AG
    Am J Phys Med; 1981 Apr; 60(2):67-75. PubMed ID: 7212047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arm cranking and wheelchair ergometry in elite spinal cord-injured athletes.
    Wicks JR; Oldridge NB; Cameron BJ; Jones NL
    Med Sci Sports Exerc; 1983; 15(3):224-31. PubMed ID: 6621310
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical advantage in wheelchair lever propulsion: effect on physical strain and efficiency.
    van der Woude LH; Botden E; Vriend I; Veeger D
    J Rehabil Res Dev; 1997 Jul; 34(3):286-94. PubMed ID: 9239621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy expenditure in wheelchair racing and handbiking - a basis for prevention of cardiovascular diseases in those with disabilities.
    Abel T; Kröner M; Rojas Vega S; Peters C; Klose C; Platen P
    Eur J Cardiovasc Prev Rehabil; 2003 Oct; 10(5):371-6. PubMed ID: 14663299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheelchair driving. Evaluation of a new training outfit.
    Lundberg A
    Scand J Rehabil Med; 1980; 12(2):67-72. PubMed ID: 7209439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of task complexity on mechanical efficiency and propulsion technique during learning of hand rim wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Med Eng Phys; 2005 Jan; 27(1):41-9. PubMed ID: 15604003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics and energetics of basketball wheelchairs evolution.
    Ardigo' LP; Goosey-Tolfrey VL; Minetti AE
    Int J Sports Med; 2005 Jun; 26(5):388-96. PubMed ID: 15895323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.