These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 5440703)

  • 1. A mathematical model of synchronized periodic growth of cell populations.
    Franke EK
    J Theor Biol; 1970 Mar; 26(3):373-82. PubMed ID: 5440703
    [No Abstract]   [Full Text] [Related]  

  • 2. On the average cellular volume in synchronized cell populations. ANL-7635.
    Trucco E
    ANL Rep; 1969 Dec; ():75-80. PubMed ID: 5310848
    [No Abstract]   [Full Text] [Related]  

  • 3. [THEORETICAL AND ANALOGIC STUDY OF THE COMPOSITION OF ALVEOLAR GAS AS A PERIODIC FUNCTION. APPLICATION TO THE PROBLEM OF CHEMICAL REGULATION OF RESPIRATION].
    FLORENTIN E
    J Physiol (Paris); 1964; 56():SUPPL 9:5-60. PubMed ID: 14274332
    [No Abstract]   [Full Text] [Related]  

  • 4. [Some mathematical problems of biology].
    Fomin SV
    Biofizika; 1970; 15(2):344-51. PubMed ID: 5470032
    [No Abstract]   [Full Text] [Related]  

  • 5. [Dynamics of cell populations and their mathematical description].
    Bleecken S
    Z Allg Mikrobiol; 1973; 13(1):3-37. PubMed ID: 4707932
    [No Abstract]   [Full Text] [Related]  

  • 6. State vector description of the proliferation of mammalian cells in tissue culture. I. Exponential growth.
    Hahn GM
    Biophys J; 1966 May; 6(3):275-90. PubMed ID: 5963460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reaction of the human vestibular apparatus to periodic effects of the ship-rocking type].
    Gusev VM; Nalimova TA; Kisliakov VA
    Kosm Biol Aviakosm Med; 1981; 15(1):63-6. PubMed ID: 7218753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of the contraction rate of myocardial cells.
    Savageau MA
    Curr Mod Biol; 1968; 2(1):29-42. PubMed ID: 5656320
    [No Abstract]   [Full Text] [Related]  

  • 9. A mathematical model of the mitotic cycle and its application to the interpretation of percentage labeled mitoses data.
    Barrett JC
    J Natl Cancer Inst; 1966 Oct; 37(4):443-50. PubMed ID: 5923498
    [No Abstract]   [Full Text] [Related]  

  • 10. [Revealing of concealed periodicity].
    Andĕl J
    Cesk Fysiol; 1969 Dec; 18(2):155-7. PubMed ID: 5363546
    [No Abstract]   [Full Text] [Related]  

  • 11. [On the mathematical description of cellular proliferation (author's transl)].
    Kiefer J
    Biophysik; 1973; 10(2):115-24. PubMed ID: 4766932
    [No Abstract]   [Full Text] [Related]  

  • 12. Theory of the helix-coil transition in DNA considered as a periodic copolymer.
    Strässler S
    J Chem Phys; 1967 Feb; 46(3):1037-42. PubMed ID: 6040829
    [No Abstract]   [Full Text] [Related]  

  • 13. Mathematical models for cellular systems the Von Foerster equation. I.
    Trucco E
    Bull Math Biophys; 1965 Sep; 27(3):285-304. PubMed ID: 5866997
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures.
    Bell GI; Anderson EC
    Biophys J; 1967 Jul; 7(4):329-51. PubMed ID: 6069910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mathematics of biological oscillators.
    Ermentrout GB
    Methods Enzymol; 1994; 240():198-216. PubMed ID: 7823832
    [No Abstract]   [Full Text] [Related]  

  • 16. Statistical methods of detection of a periodic phenomenon in a short series. Example of application: a density series of nematode eggs - II.
    Jacob C; Kerboeuf D
    Chronobiologia; 1983; 10(4):351-73. PubMed ID: 6661983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GROWTH CHARACTERISITICS OF SOME GRAM-NEGATIVE BACTERIA.
    ERRINGTON FP; POWELL EO; THOMPSON N
    J Gen Microbiol; 1965 Apr; 39():109-23. PubMed ID: 14328406
    [No Abstract]   [Full Text] [Related]  

  • 18. Synchronization of Escherichia coli in a chemostat by periodic phosphate feeding.
    Goodwin BC
    Eur J Biochem; 1969 Oct; 10(3):511-4. PubMed ID: 4899926
    [No Abstract]   [Full Text] [Related]  

  • 19. Temperature-resistant variants in clonal populations of pig kidney cells.
    Harris M
    Exp Cell Res; 1967 May; 46(2):301-14. PubMed ID: 6026809
    [No Abstract]   [Full Text] [Related]  

  • 20. A mathematical model of the mechanism of vertebrate somitic segmentation.
    Polezhaev AA
    J Theor Biol; 1992 May; 156(2):169-81. PubMed ID: 1640721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.