These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 544282)

  • 1. Composition and synthesis in vivo of water-soluble proteins in the rat ocular lens: normal and cataractous.
    Cenedella RJ
    Exp Eye Res; 1979 Dec; 29(6):655-62. PubMed ID: 544282
    [No Abstract]   [Full Text] [Related]  

  • 2. Messenger RNA for cataractous lens proteins are also present on normal lens polyribosomes.
    Weill JC; Leca G; Vincent A; Civelli O; Pouliquen Y
    Eur J Biochem; 1980 Oct; 111(2):593-601. PubMed ID: 6161809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of urea-soluble and intrinsic membrane proteins in rat lenses during the formation of galactose cataract.
    Zhao HR; Ren XH
    Ophthalmic Res; 1992; 24(5):285-8. PubMed ID: 1475076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age and cataract-related changes in the heavy molecular weight proteins and gamma crystallin composition of the mouse lens.
    Russell P; Smith SG; Carper DA; Kinoshita JH
    Exp Eye Res; 1979 Sep; 29(3):245-55. PubMed ID: 118039
    [No Abstract]   [Full Text] [Related]  

  • 9. Lens cataract formation and reversible alteration in crystallin synthesis in cultured lenses.
    Piatigorsky J; Shinohara T
    Science; 1977 Jun; 196(4296):1345-7. PubMed ID: 559349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients.
    Bours J; el-Layeh AA; Emarah MH; Rink H
    Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the DNA breakage and crystallin synthesis of embryonic chicken lenses cultured in a tryptophan-deficient medium.
    Counis MF; Chaudun E; Carreau JP; Courtois Y
    Exp Eye Res; 1984 Jan; 38(1):1-6. PubMed ID: 6705842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses.
    Wada E; Sugiura T; Nakamura H; Tsumita T
    Biochim Biophys Acta; 1981 Feb; 667(2):251-9. PubMed ID: 7213804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of fiber cells and fiber-cell messenger RNA in lens of rats maintained on a 50% galactose diet for 45 days.
    Hsu MY; Jaskoll TF; Unakar NJ; Bekhor I
    Exp Eye Res; 1987 Apr; 44(4):577-86. PubMed ID: 3297752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens.
    David LL; Azuma M; Shearer TR
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Protein synthesis in the lens and its disturbance. 2. Accumulation of 14C-L-leucine by x-irradiated and naphthalenefed rabbit lenses].
    Koyama T
    Nippon Ganka Gakkai Zasshi; 1970 Aug; 74(8):747-52. PubMed ID: 5466869
    [No Abstract]   [Full Text] [Related]  

  • 17. The distribution of soluble, insoluble and high molecular weight fractions of senile normal and cataractous human lenses as a function of internal calcium.
    Bushell AR; Duncan G
    Exp Eye Res; 1978 Feb; 26(2):223-6. PubMed ID: 631235
    [No Abstract]   [Full Text] [Related]  

  • 18. Analysis of lens protein synthesis in a cataractous mutant mouse: the Cat Fraser.
    Haloui Z; Pujol JP; Galera P; Courtois Y; Laurent M
    Exp Eye Res; 1990 Nov; 51(5):487-94. PubMed ID: 2249725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential synthesis and degradation of protein in the hereditary Philly mouse cataract.
    Piatigorsky J; Kador PF; Kinoshita JH
    Exp Eye Res; 1980 Jan; 30(1):69-78. PubMed ID: 6767618
    [No Abstract]   [Full Text] [Related]  

  • 20. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins.
    Kodama T; Wong R; Takemoto L
    Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.