These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 5443176)

  • 1. Kinetics of amino acid transport across bone marrow cell membranes.
    Lin MS; Winchell HS
    J Clin Invest; 1970 Apr; 49(4):752-61. PubMed ID: 5443176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of amino acids into rat erythrocytes and its potential physiological role.
    Tovar-Palacio AR; Torres y Torres N; Harper AE
    Rev Invest Clin; 1993; 45(3):267-74. PubMed ID: 8210769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of amino acid efflux from cells by extracellular serine.
    Sukemori S; Sugimura K
    Cancer Biochem Biophys; 1992 Nov; 13(2):113-21. PubMed ID: 1343849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Transport of amino acids across lymphocyte membrane in human peripheral blood].
    Richard G; Betuel H; Colobert L
    Bull Soc Chim Biol (Paris); 1969 Oct; 51(6):1085-94. PubMed ID: 5351962
    [No Abstract]   [Full Text] [Related]  

  • 5. Placental membrane transport: leucine transport across the brush border and basal cell membrane surfaces.
    Anand RJ; Kanwar U; Sanyal SN
    Res Exp Med (Berl); 1996; 196(1):29-43. PubMed ID: 8833485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3H-L-histidine and 65Zn(2+) are cotransported by a dipeptide transport system in intestine of lobster Homarus americanus.
    Conrad EM; Ahearn GA
    J Exp Biol; 2005 Jan; 208(Pt 2):287-96. PubMed ID: 15634848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, function, and tissue expression pattern of human SN2, a subtype of the amino acid transport system N.
    Nakanishi T; Sugawara M; Huang W; Martindale RG; Leibach FH; Ganapathy ME; Prasad PD; Ganapathy V
    Biochem Biophys Res Commun; 2001 Mar; 281(5):1343-8. PubMed ID: 11243884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo.
    Heiss P; Mayer S; Herz M; Wester HJ; Schwaiger M; Senekowitsch-Schmidtke R
    J Nucl Med; 1999 Aug; 40(8):1367-73. PubMed ID: 10450690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folate deprivation reduces homocysteine remethylation in a human intestinal epithelial cell culture model: role of serine in one-carbon donation.
    Townsend JH; Davis SR; Mackey AD; Gregory JF
    Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G588-95. PubMed ID: 14615285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposed role of glutathione in L-methionine transport across rabbit renal brush border membranes.
    Bidot-López P; Schinbeckler B
    Physiol Chem Phys; 1981; 13(6):527-30. PubMed ID: 7346868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorotrifluoroethylcysteine interaction with rabbit proximal tubule cell basolateral membrane organic anion transport and apical membrane amino acid transport.
    Groves CE; Morales MN
    J Pharmacol Exp Ther; 1999 Nov; 291(2):555-61. PubMed ID: 10525071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucagon regulation of amino acid transport in hepatocytes: effect of cell enucleation.
    Crettaz M; Kahn CR; Fehlmann M
    J Cell Physiol; 1983 May; 115(2):186-90. PubMed ID: 6302105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [On the capability of the members of the genus Aeromonas to use amino acids as sole source of carbon].
    Schubert RH
    Zentralbl Bakteriol Orig; 1969; 211(3):403-5. PubMed ID: 5386246
    [No Abstract]   [Full Text] [Related]  

  • 14. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells.
    Hayes D; Wiessner M; Rauen T; McBean GJ
    Neurochem Int; 2005 Jun; 46(8):585-94. PubMed ID: 15863236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo muscle amino acid transport involves two distinct processes.
    Miller S; Chinkes D; MacLean DA; Gore D; Wolfe RR
    Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E136-41. PubMed ID: 15191883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid requirements for growth of the rabbit blastocyst in vitro.
    Daniel JC; Krishnan RS
    J Cell Physiol; 1967 Oct; 70(2):155-60. PubMed ID: 5625908
    [No Abstract]   [Full Text] [Related]  

  • 17. Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids.
    Forsberg H; Ljungdahl PO
    Mol Cell Biol; 2001 Feb; 21(3):814-26. PubMed ID: 11154269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The entry of amino acids into the myocardium of the growing rat in vivo.
    Baños G; Daniel PM; Love ER; Moorhouse SR; Pratt OE
    J Physiol; 1971 Jul; 216(2):64P-65P. PubMed ID: 5559639
    [No Abstract]   [Full Text] [Related]  

  • 19. Hormonal regulation of amino acid transport and cAMP production in monolayer cultures of rat hepatocytes.
    Kelley DS; Shull JD; Potter VR
    J Cell Physiol; 1980 Apr; 103(1):159-68. PubMed ID: 6253504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier.
    O'Kane RL; Hawkins RA
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1167-73. PubMed ID: 12933350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.