These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 5443468)

  • 1. Effects of caffeine on crayfish muscle fibers. I. Activation of contraction and induction of Ca spike electrogenesis.
    Chiarandini DJ; Reuben JP; Brandt PW; Grundfest H
    J Gen Physiol; 1970 May; 55(5):640-64. PubMed ID: 5443468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of caffeine on crayfish muscle fibers. II. Refractoriness and factors influencing recovery (repriming) of contractile responses.
    Chiarandini DJ; Reuben JP; Girardier L; Katz GM; Grundfest H
    J Gen Physiol; 1970 May; 55(5):665-87. PubMed ID: 5443469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of effects of SKF 525-A and procaine on excitation-contraction coupling in single crayfish muscle fibers.
    Suarez-Kurtz G
    J Pharmacol Exp Ther; 1976 Sep; 198(3):687-94. PubMed ID: 978469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation by adrenaline of electrophysiological membrane parameters and contractility in intact and internally perfused single muscle fibres of the crayfish.
    Zacharová D; Lipská E; Hencek M; Hochmannová J; Sajter V
    Gen Physiol Biophys; 1993 Dec; 12(6):543-77. PubMed ID: 8070646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of membrane excitability by intracellular pH (pHi) changers through Ca2+-activated K+ current (BK channel) in single smooth muscle cells from rabbit basilar artery.
    Park JK; Kim YC; Sim JH; Choi MY; Choi W; Hwang KK; Cho MC; Kim KW; Lim SW; Lee SJ
    Pflugers Arch; 2007 May; 454(2):307-19. PubMed ID: 17285302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peeled mammalian skeletal muscle fibers. Possible stimulation of Ca2+ release via a transverse tubule-sarcoplasmic reticulum mechanism.
    Donaldson SK
    J Gen Physiol; 1985 Oct; 86(4):501-25. PubMed ID: 4056734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition by hypertonic solutions of Ca-dependent electrogenesis in single crab muscle fibers.
    Suarez-Kurtz G; Sorenson AL
    J Gen Physiol; 1977 Oct; 70(4):491-505. PubMed ID: 915472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sites of action of D2O in intact and skinned crayfish muscle fibers.
    Eastwood AB; Grundfest H; Brandt PW; Reuben JP
    J Membr Biol; 1975 Dec; 24(3-4):249-63. PubMed ID: 814241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability changes associated with the action potential in procaine-treated crayfish abdominal muscle fibers.
    Takeda K
    J Gen Physiol; 1967 Mar; 50(4):1049-74. PubMed ID: 4226776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of metal ions and caffeine on electro-mechanical coupling in crayfish muscle fibers.
    Matsumura M
    Jpn J Physiol; 1972 Feb; 22(1):71-85. PubMed ID: 4538164
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of verapamil on excitation-contraction coupling in single crab muscle fibers.
    Suarez-Kurtz G; Sorenson AL
    Pflugers Arch; 1977 Apr; 368(3):231-9. PubMed ID: 559294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions.
    Hagiwara S; Nakajima S
    J Gen Physiol; 1966 Mar; 49(4):793-806. PubMed ID: 5943615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of caffeine and procaine on the membrane and mechanical properties of the smooth muscle cells of the rabbit main pulmonary artery.
    Ito Y; Suzuki H; Kuriyama H
    Jpn J Physiol; 1977; 27(4):467-81. PubMed ID: 599741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of quinine on tension development, membrane potentials and excitation-contraction coupling of crab skeletal muscle fibres.
    Huddart H
    J Physiol; 1971 Aug; 216(3):641-57. PubMed ID: 5565642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane calcium activation in excitation-contraction coupling.
    Suarez-Kurtz G; Reuben JP; Brandt PW; Grundfest H
    J Gen Physiol; 1972 Jun; 59(6):676-88. PubMed ID: 5025745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some effects of hypertonic solutions on contraction and excitation-contraction coupling in frog skeletal muscles.
    Gordon AM; Godt RE
    J Gen Physiol; 1970 Feb; 55(2):254-75. PubMed ID: 5415044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle contraction during hyperpolarizing currents in the crab.
    Uchitel OD; García H
    J Gen Physiol; 1974 Jan; 63(1):111-22. PubMed ID: 4810206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinine contractures and Ca45 movements of frog sartorius muscles as affected by pH.
    Isaacson A; Yamaji K; Sandow A
    J Pharmacol Exp Ther; 1970 Jan; 171(1):26-31. PubMed ID: 5410935
    [No Abstract]   [Full Text] [Related]  

  • 19. The depolarizing afterpotential of crab muscle fibres. A sodium-dependent process mediated by intracellular calcium.
    Suarez-Kurtz G
    J Physiol; 1979 Jan; 286():317-29. PubMed ID: 108392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ELECTRICAL AND MECHANICAL RESPONSES IN DEEP ABDOMINAL EXTENSOR MUSCLES OF CRAYFISH AND LOBSTER.
    ABBOTT BC; PARNAS I
    J Gen Physiol; 1965 May; 48(5):919-31. PubMed ID: 14324996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.