These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 5443692)

  • 21. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Structure of crystallins in the crystalline lens based on X-ray diffraction data].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Dokl Akad Nauk SSSR; 1984; 278(4):997-1001. PubMed ID: 6518984
    [No Abstract]   [Full Text] [Related]  

  • 23. Crystallin distribution patterns in Litoria infrafrenata and Phyllomedusa sauvagei lenses.
    Keenan J; Manning G; Elia G; Dunn MJ; Orr DF; Pierscionek BK
    Proteomics; 2012 Jun; 12(11):1830-43. PubMed ID: 22623336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New medium for solubilizing proteins of the eye lens core (nucleus).
    Smith AC
    Comp Biochem Physiol B; 1985; 80(2):377-80. PubMed ID: 3979035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in proteins of the human lens in development and aging.
    Dilley KJ; Harding JJ
    Biochim Biophys Acta; 1975 Apr; 386(2):391-408. PubMed ID: 1169968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Age-dependent changes in the structure of alpha crystallin.
    Spector A; Freund T; Li LK; Augusteyn RC
    Invest Ophthalmol; 1971 Sep; 10(9):677-86. PubMed ID: 5094645
    [No Abstract]   [Full Text] [Related]  

  • 27. Changes in rat lens proteins and glutathione reductase activity with advancing age.
    Katakura K; Kishida K; Hirano H
    Int J Vitam Nutr Res; 2004 Sep; 74(5):329-33. PubMed ID: 15628670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of gamma-crystallins in the developing amphibian lens by peroxidase-labelled antibodies.
    Nöthiger R; McDevitt DS; Yamada T
    Experientia; 1971 Apr; 27(4):423-4. PubMed ID: 4996409
    [No Abstract]   [Full Text] [Related]  

  • 29. Resistance of human betaB2-crystallin to in vivo modification.
    Zhang Z; David LL; Smith DL; Smith JB
    Exp Eye Res; 2001 Aug; 73(2):203-11. PubMed ID: 11446770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystallin distribution patterns in concentric layers from toad eye lenses.
    Keenan J; Elia G; Dunn MJ; Orr DF; Pierscionek BK
    Proteomics; 2009 Dec; 9(23):5340-9. PubMed ID: 19813212
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thyroglobulin immunity. IV. Effect of thyroid immune and other protein-thyroxine complexes on tissue concentrration of labeled thyroxine and tadpole metamorphosis.
    Medda AK; Premachandra BN
    Acta Endocrinol (Copenh); 1968 Sep; 59(1):159-71. PubMed ID: 4179318
    [No Abstract]   [Full Text] [Related]  

  • 32. Towards a human crystallin map. Two-dimensional gel electrophoresis and computer analysis of water-soluble crystallins from normal and cataractous human lenses.
    Bloemendal H; Van de gaer K; Benedetti EL; Dunia I; Steely HT
    Ophthalmic Res; 1997; 29(4):177-90. PubMed ID: 9261842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The differential expression of crystallins and concanavalin A-binding proteins in different cellular "compartments" of the amphibian crystalline lens].
    Aleĭnikova KS; Simirskiĭ VN; Mikhaĭlov AT
    Dokl Akad Nauk SSSR; 1990; 312(6):1497-500. PubMed ID: 2226153
    [No Abstract]   [Full Text] [Related]  

  • 34. Starch-gel electrophoresis of the soluble lens proteins from normal and galactosemic animals.
    Holt WS; Kinoshita JH
    Invest Ophthalmol; 1968 Apr; 7(2):169-78. PubMed ID: 5641566
    [No Abstract]   [Full Text] [Related]  

  • 35. Ontogeny and localization of the crystallins during embryonic lens development in Xenopus laevis.
    McDevitt DS; Brahma SK
    J Exp Zool; 1973 Nov; 186(2):127-40. PubMed ID: 4201078
    [No Abstract]   [Full Text] [Related]  

  • 36. Water-insoluble high-molecular-weight and alpha-crystallins as the source of the Scheimpflug light scattering pattern in the rat lens.
    Bours J; Ahrend MH; Wegener A; Hockwin O
    Ophthalmic Res; 1990; 22 Suppl 1():90-4. PubMed ID: 2388761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunological properties of rat lens gamma-crystallins. I. Characterization of the major components.
    Vornhagen R; Bours J; Rink H
    Ophthalmic Res; 1982; 14(4):298-304. PubMed ID: 6813788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.
    Kabasawa I; Watanabe M; Kimura M
    Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study of the human crystalline lens in relation to age].
    Kasavina BS; Akkuev VM
    Biull Eksp Biol Med; 1971 Jan; 71(1):28-31. PubMed ID: 5548998
    [No Abstract]   [Full Text] [Related]  

  • 40. Study of the soluble lens proteins from different amphibian species.
    Brahma SK; van Doorenmaalen WJ
    Exp Eye Res; 1969 Apr; 8(2):168-71. PubMed ID: 4977725
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.