These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 5444157)

  • 1. Calcium efflux from a heavy sarcotubular fraction. Effects of ryanodine, caffeine and magnesium.
    Fairhurst AS; Hasselbach W
    Eur J Biochem; 1970 Apr; 13(3):504-9. PubMed ID: 5444157
    [No Abstract]   [Full Text] [Related]  

  • 2. A ryanodine-caffeine-sensitive membrane fraction of skeletal muscle.
    Fairhurst AS
    Am J Physiol; 1974 Nov; 227(5):1124-31. PubMed ID: 4280249
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of quinidine on calcium transport activities of the rabbit heart mitochondria and sarcotubular vesicles.
    Harrow JA; Dhalla NS
    Biochem Pharmacol; 1976 Apr; 25(8):897-902. PubMed ID: 1267835
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism of quinidine and chlorpromazine inhibition of sarcotubular ATPase activity.
    Pang DC; Briggs FN
    Biochem Pharmacol; 1976 Jan; 25(1):21-5. PubMed ID: 130135
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetics of calcium transport by fragmented sarcoplasmic reticulum.
    Worsfold M; Peter JB
    J Biol Chem; 1970 Nov; 245(21):5545-52. PubMed ID: 5472356
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of sarcotubular calcium transport by caffeine: species and temperature dependence.
    Fuchs F
    Biochim Biophys Acta; 1969 Apr; 172(3):566-70. PubMed ID: 5787639
    [No Abstract]   [Full Text] [Related]  

  • 7. 9-methyl-7-bromoeudistomin D, a powerful radio-labelable Ca++ releaser having caffeine-like properties, acts on Ca(++)-induced Ca++ release channels of sarcoplasmic reticulum.
    Seino A; Kobayashi M; Kobayashi J; Fang YI; Ishibashi M; Nakamura H; Momose K; Ohizumi Y
    J Pharmacol Exp Ther; 1991 Mar; 256(3):861-7. PubMed ID: 1706431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ryanodine: antithetical calcium channel effects in skeletal muscle sarcoplasmic reticulum.
    Nelson TE
    J Pharmacol Exp Ther; 1987 Jul; 242(1):56-61. PubMed ID: 2441030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of chlorpromazine and quinidine inhibition of cardiac sarcotubular ATPase.
    Pang DC; Briggs FN
    Recent Adv Stud Cardiac Struct Metab; 1975; 7():421-4. PubMed ID: 131963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides.
    Pessah IN; Stambuk RA; Casida JE
    Mol Pharmacol; 1987 Mar; 31(3):232-8. PubMed ID: 2436032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ryanodine as a probe for the functional state of the skeletal muscle sarcoplasmic reticulum calcium release channel.
    Chu A; Díaz-Muñoz M; Hawkes MJ; Brush K; Hamilton SL
    Mol Pharmacol; 1990 May; 37(5):735-41. PubMed ID: 1692609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent inhibitory effects of Ca2+, Mg2+, and K+ on Ca2+ efflux mediated by sarcoplasmic reticulum ATPase.
    Wolosker H; de Meis L
    Am J Physiol; 1994 May; 266(5 Pt 1):C1376-81. PubMed ID: 8203500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms contributing to the cardiac inotropic effect of Na pump inhibition and reduction of extracellular Na.
    Bers DM
    J Gen Physiol; 1987 Oct; 90(4):479-504. PubMed ID: 3681259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of a ryanodine-sensitive calcium pump in skeletal muscle fractions.
    Fairhurst AS; Jenden DJ
    J Cell Physiol; 1966 Apr; 67(2):233-8. PubMed ID: 5924092
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of effects of ryanodine and caffeine on rat ventricular myocardium.
    Sutko JL; Thompson LJ; Kort AA; Lakatta EG
    Am J Physiol; 1986 May; 250(5 Pt 2):H786-95. PubMed ID: 3706554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum.
    Chu A; Volpe P; Costello B; Fleischer S
    Biochemistry; 1986 Dec; 25(25):8315-24. PubMed ID: 2434126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-induced calcium release from heavy sarcoplasmic reticulum of skeletal muscle.
    Wyskovsky W; Hauptner R; Suko J
    Biochim Biophys Acta; 1988 Feb; 938(1):89-96. PubMed ID: 3337819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caffeine-induced calcium oscillations in heavy-sarcoplasmic-reticulum vesicles from rabbit skeletal muscle.
    Wyskovsky W
    Eur J Biochem; 1994 Apr; 221(1):317-25. PubMed ID: 7513282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bisprasin, a novel Ca(2+) releaser with caffeine-like properties from a marine sponge, Dysidea spp., acts on Ca(2+)-induced Ca(2+) release channels of skeletal muscle sarcoplasmic reticulum.
    Suzuki A; Matsunaga K; Shin H; Tabudrav J; Shizuri Y; Ohizumi Y
    J Pharmacol Exp Ther; 2000 Feb; 292(2):725-30. PubMed ID: 10640311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [On the significance of calcium in caffeine-induced contracture].
    Küchler G; Zett L
    Acta Biol Med Ger; 1967; 18(6):683-94. PubMed ID: 5588992
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.