These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 5446930)

  • 41. Precision scanning calorimetry of bile salt-phosphatidylcholine micelles.
    Spink CH; Müller K; Sturtevant JM
    Biochemistry; 1982 Dec; 21(25):6598-605. PubMed ID: 7150579
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Action of a phospholipase on lecithin in micellar state].
    Olive J; Dervichian DG
    Bull Soc Chim Biol (Paris); 1968 Dec; 50(9):1409-18. PubMed ID: 5750682
    [No Abstract]   [Full Text] [Related]  

  • 43. Adsorption of lecithin by cholesterol.
    Hoelgaard A; Frøkjaer S
    J Pharm Sci; 1980 Apr; 69(4):413-5. PubMed ID: 7373536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles.
    Luk AS; Kaler EW; Lee SP
    Biochemistry; 1997 May; 36(19):5633-44. PubMed ID: 9153403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solubilization and pharmacokinetic behaviors of sodium cholate/lecithin-mixed micelles containing cyclosporine A.
    Guo J; Wu T; Ping Q; Chen Y; Shen J; Jiang G
    Drug Deliv; 2005; 12(1):35-9. PubMed ID: 15801719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biophysics of lipid associations. 3. The quaternary systems lecithin-bile salt-cholesterol-water.
    Bourgès M; Small DM; Dervichian DG
    Biochim Biophys Acta; 1967 Oct; 144(2):189-201. PubMed ID: 6064602
    [No Abstract]   [Full Text] [Related]  

  • 47. Molecular organization in the liquid--crystalline phases of lecithin--sodium cholate-water systems studied by nuclear magnetic resonance.
    Ulmius J; Lindblom G; Wennerström H; Johansson LB; Fontell K; Söderman O; Arvidson G
    Biochemistry; 1982 Mar; 21(7):1553-60. PubMed ID: 7082635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular arrangement in monolayers containing cholesterol and dipalmitoyl lecithin.
    Zatz JL; Cleary GW
    J Pharm Sci; 1975 Sep; 64(9):1534-7. PubMed ID: 1185574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solubilization of vitamin K1 by bile salts and phosphatidylcholine-bile salts mixed micelles.
    Nagata M; Yotsuyanagi T; Ikeda K
    J Pharm Pharmacol; 1988 Feb; 40(2):85-8. PubMed ID: 2897458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light-scattering studies on bile acid salts I: Pattern of self-association of sodium cholate, sodium glycocholate, and sodium taurocholate in aqueous electrolyte solutions.
    Chang Y; Cardinal JR
    J Pharm Sci; 1978 Feb; 67(2):174-81. PubMed ID: 621632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Liposomes prepared dynamically by interactions between bile salt and phospholipid molecules.
    Son K; Alkan H
    Biochim Biophys Acta; 1989 Jun; 981(2):288-94. PubMed ID: 2730906
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles.
    Almog S; Kushnir T; Nir S; Lichtenberg D
    Biochemistry; 1986 May; 25(9):2597-605. PubMed ID: 3718967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids.
    Tung SH; Huang YE; Raghavan SR
    J Am Chem Soc; 2006 May; 128(17):5751-6. PubMed ID: 16637643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The biophysics of lipidic associations. I. The ternary systems: lecithin-bile salt-water.
    Small DM; Bourgès MC; Dervichian DG
    Biochim Biophys Acta; 1966 Dec; 125(3):563-80. PubMed ID: 5981996
    [No Abstract]   [Full Text] [Related]  

  • 55. Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species.
    Matsuoka K; Suzuki M; Honda C; Endo K; Moroi Y
    Chem Phys Lipids; 2006 Jan; 139(1):1-10. PubMed ID: 16256096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pan-sulfation of bile salts markedly increases hydrophilicity and essentially abolishes self- and hetero-association with lecithin.
    Donovan JM; Yousef IM; Carey MC
    Biochim Biophys Acta; 1993 Aug; 1182(1):37-45. PubMed ID: 8347684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium affinity for biliary lipid aggregates in model biles: complementary importance of bile salts and lecithin.
    Donovan JM; Leonard MR; Batta AK; Carey MC
    Gastroenterology; 1994 Sep; 107(3):831-46. PubMed ID: 8076770
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diffusion coefficients of single bile salt and bile salt-mixed lipid micelles in aqueous solution measured by quasielastic laser light scattering.
    Oh SY; McDonnell ME; Holzbach RT; Jamieson AM
    Biochim Biophys Acta; 1977 Jul; 488(1):25-35. PubMed ID: 889858
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile.
    Cohen DE; Leighton LS; Carey MC
    Am J Physiol; 1992 Sep; 263(3 Pt 1):G386-95. PubMed ID: 1415551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.