BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

953 related articles for article (PubMed ID: 5449122)

  • 1. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart.
    Neely JR; Denton RM; England PJ; Randle PJ
    Biochem J; 1972 Jun; 128(1):147-59. PubMed ID: 5085551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo.
    McAllister A; Allison SP; Randle PJ
    Biochem J; 1973 Aug; 134(4):1067-81. PubMed ID: 4762752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats.
    Siess EA; Brocks DG; Wieland OH
    Hoppe Seylers Z Physiol Chem; 1978 Jul; 359(7):785-98. PubMed ID: 680639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate 2-oxoglutarate and malate in flight muscle and isolated mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1975 Mar; 146(3):527-35. PubMed ID: 1147907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the contents of adenine nucleotides and intermediates of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and their relationship to the control of the cycle.
    Rowan AN; Newsholme EA
    Biochem J; 1979 Jan; 178(1):209-16. PubMed ID: 435278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue.
    Saggerson ED; Greenbaum AL
    Biochem J; 1970 Sep; 119(2):193-219. PubMed ID: 4395181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of triglyceride synthesis and fatty acid synthesis in rat epididymal adipose tissue. Effects of altered dietary and hormonal conditions.
    Saggerson ED; Greenbaum AL
    Biochem J; 1970 Sep; 119(2):221-42. PubMed ID: 4249859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue.
    Patel MS; Jomain-Baum M; Ballard FJ; Hanson RW
    J Lipid Res; 1971 Mar; 12(2):179-91. PubMed ID: 4396562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo.
    Heath DF; Threlfall CJ
    Biochem J; 1968 Nov; 110(2):337-62. PubMed ID: 5726212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load.
    Taegtmeyer H
    Basic Res Cardiol; 1983; 78(4):435-50. PubMed ID: 6626122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase.
    Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1976 Aug; 440(2):377-90. PubMed ID: 182244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle.
    Lee SH; Davis EJ
    J Biol Chem; 1979 Jan; 254(2):420-30. PubMed ID: 762069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria.
    Hansford RG; Johnson RN
    J Biol Chem; 1975 Nov; 250(21):8361-75. PubMed ID: 1194259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart.
    Sundqvist KE; Peuhkurinen KJ; Hiltunen JK; Hassinen IE
    Biochim Biophys Acta; 1984 Oct; 801(3):429-36. PubMed ID: 6487652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria.
    Dennis SC; Clark JB
    Biochem J; 1978 Apr; 172(1):155-62. PubMed ID: 656069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.
    Russell RR; Taegtmeyer H
    J Clin Invest; 1991 Feb; 87(2):384-90. PubMed ID: 1671390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The control of tricarboxylate-cycle of oxidations in blowfly flight muscle. The steady-state concentrations of coenzyme A, acetyl-coenzyme A and succinyl-coenzyme A in flight muscle and isolated mitochondria.
    Hansford RG
    Biochem J; 1974 Sep; 142(3):509-19. PubMed ID: 4464839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.