These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 544932)

  • 1. Ehrlich ascites tumor cell surface labeling and kinetics of glycocalyx release.
    Smith TC; Levinson C
    J Supramol Struct; 1979; 12(1):115-25. PubMed ID: 544932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of membrane proteins related to anion transport in Ehrlich ascites tumor cells.
    Hoffmann EK; Sjøholm C; Uerkvitz W
    Tokai J Exp Clin Med; 1982; 7 Suppl():103-11. PubMed ID: 7186216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spontaneous release of a high-molecular-weight aggregate containing immunoglobulin G from the surface of Ehrlich ascites tumor cells.
    Rittenhouse HG; Ar D; Lynn MD; Denholm DK
    J Supramol Struct; 1978; 9(3):407-19. PubMed ID: 571032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective release of excreted DNA sequences from phytohemagglutinin-stimulated human peripheral blood lymphocytes. Effects of trypsin and divalent cations.
    Distelhorst CW; Cramer K; Rogers JC
    J Clin Invest; 1978 May; 61(5):1204-17. PubMed ID: 207731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of tumor cell surface in the accumulation of radioisotopes.
    Anghileri LJ; Dermietzel R; Heidbreder M
    Nuklearmedizin; 1976 Oct; 15(5):242-5. PubMed ID: 826887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding and endocytosis of a monoclonal antibody to a high molecular weight human milk fat globule membrane-associated antigen by cultured MCF-7 breast carcinoma cells.
    Aboud-Pirak E; Sergent T; Otte-Slachmuylder C; Abarca J; Trouet A; Schneider YJ
    Cancer Res; 1988 Jun; 48(11):3188-96. PubMed ID: 3365702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-inhibition of chloride transport in Ehrlich ascites tumor cells.
    Levinson C
    J Cell Physiol; 1984 Nov; 121(2):442-8. PubMed ID: 6490734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell surface membrane protein changes during the differentiation of cultured human promyelocytic leukemia HL-60 cells.
    Felsted RL; Gupta SK; Glover CJ; Fischkoff SA; Gallagher RE
    Cancer Res; 1983 Jun; 43(6):2754-61. PubMed ID: 6573952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of human neutrophil ecto-protein kinase activity released by kinase substrates.
    Skubitz KM; Ehresmann DD; Ducker TP
    J Immunol; 1991 Jul; 147(2):638-50. PubMed ID: 1712814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane chloride flux is required for target cell lysis but not for Golgi reorientation in cloned cytolytic effector cells. Golgi reorientation, N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase release, and delivery of the lethal hit are separable events in target cell lysis.
    Prochazka G; Landon C; Dennert G
    J Immunol; 1988 Aug; 141(4):1288-94. PubMed ID: 3165107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the linkage between te electrophoretic mobility and oxygen uptake of ascites tumor cells.
    Miyamoto K; Terasaki T
    Cancer Res; 1980 Dec; 40(12):4751-7. PubMed ID: 7438107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taurine release associated to volume regulation in rabbit lymphocytes.
    Jesuś García J; Sánchez Olea R; Pasantes-Morales H
    J Cell Biochem; 1991 Feb; 45(2):207-12. PubMed ID: 1711530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic mechanism of DIDS binding to band 3 (AE1) in human erythrocyte membranes.
    Salhany JM; Schopfer LM
    Blood Cells Mol Dis; 2001; 27(5):844-9. PubMed ID: 11783947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship among transport, intracellular binding, and inhibition of RNA synthesis by actinomycin D in Ehrlich ascites tumor cells in vitro.
    Bowen D; Goldman ID
    Cancer Res; 1975 Nov; 35(11 Pt 1):3054-60. PubMed ID: 1182700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-surface shedding by fibroblasts in culture.
    Plesser YM; Weiss DW; Doljanski F
    Isr J Med Sci; 1980 Jul; 16(7):519-29. PubMed ID: 7399885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fe2+ ion effect on Ehrlich ascites tumor cell conductivity and ion permeability].
    Polivoda BI; Konev VV
    Biofizika; 1982; 27(3):498-500. PubMed ID: 7093336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of tritium-labeled H2DIDS (4,4'-diisothiocyano-1,2,diphenyl ethane-2,2'disulfonic acid) with the Ehrlich mouse ascites tumor cell.
    Levinson C; Corcoran RJ; Edwards EH
    J Membr Biol; 1979 Mar; 45(1-2):61-79. PubMed ID: 448727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turnover of cell-surface macromolecules in cultured dog tracheal epithelial cells.
    Iwamoto I; Nadel JA; Varsano S; Forsberg LS
    Biochim Biophys Acta; 1988 Sep; 966(3):336-46. PubMed ID: 3137977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.