These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 544958)

  • 1. A new moving-coil microelectrode puller.
    Ensor DR
    J Neurosci Methods; 1979 Mar; 1(1):95-105. PubMed ID: 544958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quartz micropipettes for intracellular voltage microelectrodes and ion-selective microelectrodes.
    Munoz JL; Coles JA
    J Neurosci Methods; 1987 Nov; 22(1):57-64. PubMed ID: 2826932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified method for manufacturing glass-insulated metal microelectrodes.
    Sugiyama K; Dong WK; Chudler EH
    J Neurosci Methods; 1994 Jul; 53(1):73-80. PubMed ID: 7990516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropipette puller design: form of the heating filament and effects of filament width on tip length and diameter.
    Flaming DG; Brown KT
    J Neurosci Methods; 1982 Jul; 6(1-2):91-102. PubMed ID: 7121062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry beveling micropipettes using a computer hard drive.
    Canfield JG
    J Neurosci Methods; 2006 Nov; 158(1):19-21. PubMed ID: 16782203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automated pipette puller for fabrication of glass micropipettes.
    Tamizhanban R; Sreejith KR; Jayanth GR
    Rev Sci Instrum; 2014 May; 85(5):055105. PubMed ID: 24880413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reproducible technique for breaking glass micropipettes over a wide range of tip diameters.
    Briano RA
    J Neurosci Methods; 1983 Sep; 9(1):31-4. PubMed ID: 6632960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple device to aid impalement of cells using conventional microelectrode drives.
    Gutierrez O; Salinas R
    Physiol Behav; 1984 Jun; 32(6):1033-5. PubMed ID: 6494302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for making ion-selective microelectrodes suitable for intracellular recording in vertebrate cells.
    Borrelli MJ; Carlini WG; Dewey WC; Ransom BR
    J Neurosci Methods; 1985; 15(2):141-54. PubMed ID: 4079459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of the David-Kopf puller (DKI 700 C) for the preparation of multi-barrel glass micropipettes.
    Tölle TR; Dabrowski H; Welzl H
    J Neurosci Methods; 1984 Apr; 10(4):277-80. PubMed ID: 6748739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultracompliant glass microelectrode for intracellular recording.
    Fedida D; Sethi S; Mulder BJ; ter Keurs HE
    Am J Physiol; 1990 Jan; 258(1 Pt 1):C164-70. PubMed ID: 2301563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technique for precision beveling of relatively large micropipettes.
    Brown KT; Flaming DG
    J Neurosci Methods; 1979 Mar; 1(1):25-34. PubMed ID: 544956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for manufacturing long-shanked glass microelectrodes.
    Erhardt M; Junier N
    J Neurosci Methods; 1982 Jul; 6(1-2):85-9. PubMed ID: 7121061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of glass microelectrode properties by response surface methodology.
    Kisaalita WS; Skeen RS; Van Wie BJ; Barnes CD; Fung SJ
    J Neurosci Methods; 1991 Dec; 40(2-3):113-20. PubMed ID: 1800847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel concentric double-barrelled calcium-selective microelectrode for small cells.
    Yamaguchi H
    Can J Physiol Pharmacol; 1987 May; 65(5):1006-8. PubMed ID: 3621028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry beveling of micropipette electrodes.
    Baldwin DJ
    J Neurosci Methods; 1980 Apr; 2(2):153-61. PubMed ID: 7392668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The elgiloy microelectrode: fabrication techniques and characteristics.
    Ashford JW; Coburn KL; Fuster JM
    J Neurosci Methods; 1985 Sep; 14(4):247-52. PubMed ID: 4058056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new design of carbon fiber microelectrode for in vivo voltammetry using fused silica.
    Swiergiel AH; Palamarchouk VS; Dunn AJ
    J Neurosci Methods; 1997 Apr; 73(1):29-33. PubMed ID: 9130675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifications of glass microelectrodes: a self-filling and a semifloating glass microelectrode.
    Sato K
    Am J Physiol; 1977 May; 232(5):C207-10. PubMed ID: 404887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified horizontal capillary puller for fabrication of patch-clamp pipettes.
    Mealing GA; Schwartz JL
    Brain Res Bull; 1989 May; 22(5):913-5. PubMed ID: 2765950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.