These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 5455)
1. Association of gylcogenolysis with cardiac sarcoplasmic reticulum. Entam ML; Kanike K; Goldstein MA; Nelson TE; Bornet EP; Futch TW; Schwartz A J Biol Chem; 1976 May; 251(10):3140-6. PubMed ID: 5455 [TBL] [Abstract][Full Text] [Related]
2. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase. Schwartz A; Entman ML; Kaniike K; Lane LK; Van Winkle WB; Bornet EP Biochim Biophys Acta; 1976 Feb; 426(1):57-72. PubMed ID: 2325 [TBL] [Abstract][Full Text] [Related]
3. The cardiac sarcoplasmic reticulum-glycogenolytic complex. A possible effector site for cyclic AMP. Entman ML; Bornet EP; Barber AJ; Schwartz A; Levey GS; Lehotay DC; Bricker LA Biochim Biophys Acta; 1977 Sep; 499(2):228-37. PubMed ID: 198010 [TBL] [Abstract][Full Text] [Related]
4. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. Entman ML; Keslensky SS; Chu A; Van Winkle WB J Biol Chem; 1980 Jul; 255(13):6245-52. PubMed ID: 6446555 [TBL] [Abstract][Full Text] [Related]
5. Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. Wanson JC; Drochmans P J Cell Biol; 1972 Aug; 54(2):206-24. PubMed ID: 5040859 [TBL] [Abstract][Full Text] [Related]
6. [In vitro formation of glycogenolytic enzyme complexes with the sarcoplasmic reticulum in the skeletal muscles of skates and the frog]. Serebrenikova TP; Shmelev VK Zh Evol Biokhim Fiziol; 1986; 22(2):196-200. PubMed ID: 2940777 [TBL] [Abstract][Full Text] [Related]
7. Ca2+ uptake coupled to glycogen phosphorolysis in the glycogenolytic-sarcoplasmic reticulum complex from rat skeletal muscle. Nogues M; Cuenda A; Henao F; Gutiérrez-Merino C Z Naturforsch C J Biosci; 1996; 51(7-8):591-8. PubMed ID: 8810099 [TBL] [Abstract][Full Text] [Related]
8. Ca2+/calmodulin-dependent phospholamban kinase from cardiac sarcoplasmic reticulum is distinct from phosphorylase kinase and forms a regulatory complex with phospholamban and the Ca2+-ATPase. Le Peuch CJ; Le Peuch DA; Demaille JG Ann N Y Acad Sci; 1982; 402():549-57. PubMed ID: 6220653 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. Tada M; Kirchberger MA; Katz AM J Biol Chem; 1975 Apr; 250(7):2640-7. PubMed ID: 235523 [TBL] [Abstract][Full Text] [Related]
10. The content of glycogen phosphorylase and glycogen in preparations of sarcoplasmic reticulum-glycogenolytic complex is enhanced in diabetic rat skeletal muscle. Garduño E; Nogues M; Merino JM; Gutiérrez-Merino C; Henao F Diabetologia; 2001 Oct; 44(10):1238-46. PubMed ID: 11692172 [TBL] [Abstract][Full Text] [Related]
11. Glycogen phosphorolysis can form a metabolic shuttle to support Ca2+ uptake by sarcoplasmic reticulum membranes in skeletal muscle. Cuenda A; Nogues M; Gutiérrez-Merino C; de Meis L Biochem Biophys Res Commun; 1993 Nov; 196(3):1127-32. PubMed ID: 8250871 [TBL] [Abstract][Full Text] [Related]
12. Association of glycogenolysis with cardiac sarcoplasmic reticulum: II. Effect of glycogen depletion, deoxycholate solubilization and cardiac ischemia: evidence for a phorphorylase kinase membrane complex. Entman ML; Bornet EP; Van Winkle WB; Goldstein MA; Schwartz A J Mol Cell Cardiol; 1977 Jul; 9(7):515-28. PubMed ID: 408501 [No Abstract] [Full Text] [Related]
13. Enzymes regulating glycogen metabolism in swine subcutaneous adipose tissue. I. Phosphorylase and phosphorylase phosphatase. Miller E; Fredholm B; Miller RE; Steinberg D; Mayer SE Biochemistry; 1975 Jun; 14(11):2470-80. PubMed ID: 166658 [TBL] [Abstract][Full Text] [Related]
14. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. Berman MC; McIntosh DB; Kench JE J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142 [TBL] [Abstract][Full Text] [Related]
15. Ca2+-dependent activation of phosphorylase by phosphorylase kinase in adipose tissue. Khoo JC Biochim Biophys Acta; 1976 Jan; 422(1):87-97. PubMed ID: 813777 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylase kinase mediating the effects of cyclic AMP in muscle. Gross SR; Mayer SE Metabolism; 1975 Mar; 24(3):369-80. PubMed ID: 165358 [TBL] [Abstract][Full Text] [Related]
18. Interaction between glycogen phosphorylase and sarcoplasmic reticulum membranes and its functional implications. Cuenda A; Nogues M; Henao F; Gutiérrez-Merino C J Biol Chem; 1995 May; 270(20):11998-2004. PubMed ID: 7744850 [TBL] [Abstract][Full Text] [Related]
19. Role of AMP on the activation of glycogen synthase and phosphorylase by adenosine, fructose, and glutamine in rat hepatocytes. Carabaza A; Ricart MD; Mor A; Guinovart JJ; Ciudad CJ J Biol Chem; 1990 Feb; 265(5):2724-32. PubMed ID: 2105932 [TBL] [Abstract][Full Text] [Related]
20. The role of calcium and cyclic adenosine 3',5'-monophosphate in the regulation of glycogen metabolism in phagocytozing human polymorphonuclear leukocytes. Herlin T; Petersen CS; Esmann V Biochim Biophys Acta; 1978 Aug; 542(1):63-76. PubMed ID: 208651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]