These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 5456957)
1. Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions. Evaluation of subsite affinities of exo-enzyme. Hiromi K Biochem Biophys Res Commun; 1970 Jul; 40(1):1-6. PubMed ID: 5456957 [No Abstract] [Full Text] [Related]
2. Kinetics of the course of degradation of linear polymer substrate catalyzed by an exo-enzyme (a general case). Hiromi K; Ono S J Biochem; 1967 May; 61(5):654-6. PubMed ID: 6066060 [No Abstract] [Full Text] [Related]
3. Subsite mapping of enzymes. Correlation of product patterns with Michaelis parameters and substrate-induced strain. Thoma JA; Rao GV; Brothers C; Spradlin J; Li LH J Biol Chem; 1971 Sep; 246(18):5621-35. PubMed ID: 5096086 [No Abstract] [Full Text] [Related]
4. Steady-state kinetics of one-substrate enzymic mechanisms involving tow enzyme conformations. I. Effects of modifiers on a mechanism postulating a single enzyme-substrate complex. Cennamo C J Theor Biol; 1968 Nov; 21(2):260-77. PubMed ID: 5700438 [No Abstract] [Full Text] [Related]
5. The effects of isomerization and polymerization on the binding of ligands to acceptor molecules: implications in metabolic control. Nichol LW; Smith GD; Ogston AG Biochim Biophys Acta; 1969 Jun; 184(1):1-10. PubMed ID: 5791108 [No Abstract] [Full Text] [Related]
6. Characterization of exo-(1,4)-alpha glucan lyase from red alga Gracilaria chorda. Activation, inactivation and the kinetic properties of the enzyme. Yoshinaga K; Fujisue M; Abe J; Hanashiro I; Takeda Y; Muroya K; Hizukuri S Biochim Biophys Acta; 1999 Nov; 1472(3):447-54. PubMed ID: 10564758 [TBL] [Abstract][Full Text] [Related]
7. [Method of calculating the coefficient of protection in biochemical kinetics]. Kosterin SA; KurskiÄ MD Biofizika; 1979; 24(2):327-8. PubMed ID: 444615 [No Abstract] [Full Text] [Related]
8. Sigmoidal progress curves in the polymerization of leucine methyl ester catalyzed by papain. Sluyterman LA; Wijdenes J Biochim Biophys Acta; 1972 Nov; 289(1):194-202. PubMed ID: 5086947 [No Abstract] [Full Text] [Related]
9. Use of integrated rate equations in estimating the kinetic constants of enzyme-catalyzed reactions. Schwert GW J Biol Chem; 1969 Mar; 244(5):1278-84. PubMed ID: 5767309 [No Abstract] [Full Text] [Related]
10. Cooperative binding to linear biopolymers. 1. Fundamental static and dynamic properties. Schwarz G Eur J Biochem; 1970 Feb; 12(3):442-53. PubMed ID: 5440621 [No Abstract] [Full Text] [Related]
11. [Electromechanical model of an enzyme-substrate kompleksa]. RomanovskiÄ IuM; Tikhomirova NK; Khurgin IuI Biofizika; 1979; 24(3):442-7. PubMed ID: 465551 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of protein subunit interactions: simulation of a polymerization overshoot. Scheele RB; Schuster TM Biopolymers; 1974; 13(2):276-88. PubMed ID: 4820061 [No Abstract] [Full Text] [Related]
13. Minimizing nonproductive substrate binding: a new look at glucoamylase subsite affinities. Natarajan SK; Sierks MR Biochemistry; 1997 Dec; 36(48):14946-55. PubMed ID: 9398219 [TBL] [Abstract][Full Text] [Related]
14. Remarks on the kinetics of enzymes with interacting effector molecules. Tests of a configurational hypothesis in a quasi-equilibrium model. Whitehead E Biochemistry; 1970 Mar; 9(6):1440-53. PubMed ID: 5418377 [No Abstract] [Full Text] [Related]
15. Chemical relaxation of cyclic enzyme reactions. I. General kinetic treatment of three-step mechanisms. Czerlinski GH J Theor Biol; 1968 Dec; 21(3):387-97. PubMed ID: 5719251 [No Abstract] [Full Text] [Related]
16. Calculation of rate constants from relaxation spectra of enzyme reactions. Haslam JL J Phys Chem; 1972 Feb; 76(3):366-9. PubMed ID: 5060755 [No Abstract] [Full Text] [Related]
17. Chemical relaxation of cyclic enzyme reactions. II. General kinetic treatment of four-step mechanisms. Czerlinski GH J Theor Biol; 1968 Dec; 21(3):398-407. PubMed ID: 5719252 [No Abstract] [Full Text] [Related]
18. Prediction of changes in the action pattern of polymer-degrading enzymes following chemical modification of a subsite. Hiromi K; Onishi M; Shibata S J Biochem; 1973 Aug; 74(2):397-400. PubMed ID: 4761328 [No Abstract] [Full Text] [Related]
19. Subsite mapping of enzymes. Depolymerase computer modelling. Allen JD; Thoma JA Biochem J; 1976 Oct; 159(1):105-20. PubMed ID: 999629 [TBL] [Abstract][Full Text] [Related]
20. Methods of determining rate constants in single-substrate-single-product enzyme reactions. Use of induced transport: limitations of product inhibition. Britton HG Biochem J; 1973 Jun; 133(2):255-61. PubMed ID: 4723775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]