These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 5457075)

  • 61. [In vivo studies on the metabolism of phosphatidylethanolamine. II. The determination of pool sizes and specific activities of ethanolamine, phosphorylethanolamine and glycerylphosphorylethanolamine in mouse tissues after the intraperitoneal administration of 14C-ethanolamine].
    Okabe H
    Sapporo Igaku Zasshi; 1969; 36(3):84-94. PubMed ID: 5394013
    [No Abstract]   [Full Text] [Related]  

  • 62. Requirement of cytidine derivatives in the biosynthesis of O-alkyl phospholipids.
    Snyder F; Blank ML; Malone B
    J Biol Chem; 1970 Aug; 245(16):4016-8. PubMed ID: 5496989
    [No Abstract]   [Full Text] [Related]  

  • 63. Acylation of CDP-monoacylglycerol cannot be confirmed.
    Thompson W; Zuk RT
    J Biol Chem; 1983 Aug; 258(16):9623. PubMed ID: 6885763
    [No Abstract]   [Full Text] [Related]  

  • 64. Glycerokinase and desaturase activity in pig, chicken and sheep intestinal epithelium.
    Bickerstaffe R; Annison EF
    Comp Biochem Physiol; 1969 Oct; 31(1):47-54. PubMed ID: 5346851
    [No Abstract]   [Full Text] [Related]  

  • 65. The formation of phospholipids containing unnatural bases by the cytidine pathway.
    Chojnacki T; Ansell GB
    J Neurochem; 1967 Apr; 14(4):413-20. PubMed ID: 6024308
    [No Abstract]   [Full Text] [Related]  

  • 66. Enzymic synthesis of 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine through ethanolaminephosphotransferase activity in the neuronal and glial cells of rabbit in vitro.
    Roberti R; Binaglia L; Francescangeli E; Goracci G; Porcellati G
    Lipids; 1975 Mar; 10(3):121-7. PubMed ID: 1128165
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Studies of rat brain choline ethanolamine phosphotransferases using labeled alkylacylglycerol as substrate with evidence for reversibility of the reactions.
    Goracci G; Horrocks LA; Porcellati G
    Adv Exp Med Biol; 1978; 101():269-78. PubMed ID: 208359
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lack of competition between phosphatidylcholine and phosphatidylethanolamine synthesis in the membranes of Entodinium caudatum.
    Dawson RM; Letcher A
    FEBS Lett; 1977 May; 77(2):179-81. PubMed ID: 405254
    [No Abstract]   [Full Text] [Related]  

  • 69. Intermediary metabolism of phospholipids in brain tissue. 3. Phosphocholine-glyceride transferase.
    McCaman RE; Cook K
    J Biol Chem; 1966 Jul; 241(14):3390-4. PubMed ID: 5913129
    [No Abstract]   [Full Text] [Related]  

  • 70. Biosynthesis of steroid sulfatides.
    Benes P; Schirazi M; Oertel GW
    Acta Endocrinol Suppl (Copenh); 1973; 173():79. PubMed ID: 4269394
    [No Abstract]   [Full Text] [Related]  

  • 71. Biosynthesis of lecithin by skeletal muscle.
    Pennington RJ; Worsfold M
    Biochim Biophys Acta; 1969 Jun; 176(4):774-82. PubMed ID: 5797090
    [No Abstract]   [Full Text] [Related]  

  • 72. [Relation of sphingosine degradation and serine metabolism to the biosynthesis of phospholipids].
    Henning R; Stoffel W
    Hoppe Seylers Z Physiol Chem; 1969 Oct; 350(10):1178-9. PubMed ID: 5352347
    [No Abstract]   [Full Text] [Related]  

  • 73. Intestinal uptake and metabolism of alkyl acyl glycerophospholipids and of alkyl glycerophospholipids in the rat. Biosynthesis of plasmalogens from ( 3 H)alkyl glycerophosphoryl ( 14 )ethanolamine.
    Paltauf F
    Biochim Biophys Acta; 1972 Mar; 260(3):352-64. PubMed ID: 5038255
    [No Abstract]   [Full Text] [Related]  

  • 74. Metabolism of phosphatidylcholine in brain and liver of developing rats.
    Chida N; Arakawa T
    Tohoku J Exp Med; 1971 Aug; 104(4):359-71. PubMed ID: 5124684
    [No Abstract]   [Full Text] [Related]  

  • 75. Incorporation of (14-C) ethanolamine and (3-H) methionine into phospholipids of rat brain and liver in vivo and in vitro.
    Morganstern RD; Abdel-Latif AA
    J Neurobiol; 1974; 5(5):393-410. PubMed ID: 4452892
    [No Abstract]   [Full Text] [Related]  

  • 76. Enzymic conversion of uridine nucleotide to cytidine nucleotide by rat brain.
    Dawson DM
    J Neurochem; 1968 Jan; 15(1):31-4. PubMed ID: 5638134
    [No Abstract]   [Full Text] [Related]  

  • 77. The subcellular distribution of acyltransferases which catalyze the synthesis of phosphoglycerides.
    Eibl H; Hill EE; Lands WE
    Eur J Biochem; 1969 Jun; 9(2):250-8. PubMed ID: 4308618
    [No Abstract]   [Full Text] [Related]  

  • 78. The cytidine triphosphate: cholinephosphate cytidylyltransferase of normal and degenerating peripheral nerve: a study of its activation by phospholipids.
    Porcellati G; Arienti G
    Brain Res; 1970 May; 19(3):451-64. PubMed ID: 5444325
    [No Abstract]   [Full Text] [Related]  

  • 79. The enzymic synthesis of disialoganglioside: rat brain cytidine-5'-monophospho-N-acetylneuraminic acid: monosialoganglioside (G M1 ) sialyltransferase.
    Yip MC
    Biochim Biophys Acta; 1973 May; 306(2):298-306. PubMed ID: 4351506
    [No Abstract]   [Full Text] [Related]  

  • 80. Biosynthesis of sphingomyelin in developing brain tissues.
    Sribney M; Duffe MK; Lyman EM
    Can J Biochem; 1973 Nov; 51(11):1498-504. PubMed ID: 4766139
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.