These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5459543)

  • 1. Bacterial bioluminescence. Comparisons of bioluminescence emission spectra, the fluorescence of luciferase reaction mixtures, and the fluorescence of flavin cations.
    Eley M; Lee J; Lhoste JM; Lee CY; Cormier MJ; Hemmerich P
    Biochemistry; 1970 Jul; 9(14):2902-8. PubMed ID: 5459543
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect of flavin isomers and analogues upon the color of bacterial bioluminescence.
    Mitchell G; Hastings JW
    J Biol Chem; 1969 May; 244(10):2572-6. PubMed ID: 4306029
    [No Abstract]   [Full Text] [Related]  

  • 3. Bacterial luciferase requires one reduced flavin for light emission.
    Becvar JE; Hastings JW
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3374-6. PubMed ID: 1059124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of components of fluorescence spectra of mixtures by intensity- and anisotropy decay-associated analysis: the bacterial luciferase intermediates.
    Lee J; Wang YY; Gibson BG
    Anal Biochem; 1990 Mar; 185(2):220-9. PubMed ID: 2339779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on luciferase from Photobacterium phosphoreum. XI. Interaction of 8-substituted FMNH2 with luciferase.
    Watanabe T; Matsui K; Kasai S; Nakamura T
    J Biochem; 1978 Dec; 84(6):1441-6. PubMed ID: 738995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics.
    Eckstein JW; Hastings JW; Ghisla S
    Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity and stability of the luciferase--flavin intermediate.
    Becvar JE; Tu SC; Hastings JW
    Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lumazine protein and the excitation mechanism in bacterial bioluminescence.
    Lee J
    Biophys Chem; 1993 Dec; 48(2):149-58. PubMed ID: 8298053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study in fluid media and at low temperature of reaction of bioluminescence emission of Photobacterium Leiognathi].
    Lavelle F; Henry JP; Michelson AM
    C R Acad Hebd Seances Acad Sci D; 1970 Apr; 270(17):2126-9. PubMed ID: 4987002
    [No Abstract]   [Full Text] [Related]  

  • 10. The impact of LuxF on light intensity in bacterial bioluminescence.
    Brodl E; Csamay A; Horn C; Niederhauser J; Weber H; Macheroux P
    J Photochem Photobiol B; 2020 Jun; 207():111881. PubMed ID: 32325406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase.
    Vetrova EV; Kudryasheva NS; Visser AJ; van Hoek A
    Luminescence; 2005; 20(3):205-9. PubMed ID: 15924327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence and bioluminescence of bacterial luciferase intermediates.
    Balny C; Hastings JW
    Biochemistry; 1975 Oct; 14(21):4719-23. PubMed ID: 1182111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction.
    Watanabe T; Nakamura T
    J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radical participation in bacterial bioluminescence.
    Matheson IB; O'Kane DJ; Lee J
    Free Radic Res Commun; 1986; 2(1-2):1-5. PubMed ID: 3505234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of recombinant fluorescent proteins from Photobacterium leiognathi and their interaction with luciferase intermediates.
    Petushkov VN; Gibson BG; Lee J
    Biochemistry; 1995 Mar; 34(10):3300-9. PubMed ID: 7880825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial bioluminescence: absorption and fluorescence characteristics and composition of reaction products of reduced flavin mononucleotide with luciferase and oxygen.
    Lee J; Murphy CL
    Biochem Biophys Res Commun; 1973 Jul; 53(1):157-63. PubMed ID: 4741544
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies in bioluminescence. VII. Bacterial NADH: flavin mononucleotide oxidoreductase.
    Puget K; Michelson AM
    Biochimie; 1972; 54(9):1197-204. PubMed ID: 4347626
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.
    Petushkov VN; Ketelaars M; Gibson BG; Lee J
    Biochemistry; 1996 Sep; 35(37):12086-93. PubMed ID: 8810914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on luciferase form Photobacterium phosphoreum. V. An enzyme-FMN intermediate complex in the bioluminescent reaction.
    Yoshida K; Takahashi M; Nakamura T
    J Biochem; 1974 Mar; 75(3):583-9. PubMed ID: 4834652
    [No Abstract]   [Full Text] [Related]  

  • 20. Insoluble bacterial luciferases: a new approach to some problems in bioluminescence.
    Erlanger BF; Isambert MF; Michelson AM
    Biochem Biophys Res Commun; 1970 Jul; 40(1):70-6. PubMed ID: 5456966
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.