These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 5460841)

  • 21. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM
    Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Repression, by fructose, of the biosynthesis of 6-phosphofructokinase and phosphoglyceromutase in Acetobacter xylinum].
    Prieur P
    Bull Soc Chim Biol (Paris); 1969 Jan; 50(10):1769-82. PubMed ID: 4240519
    [No Abstract]   [Full Text] [Related]  

  • 23. Regulation of glycolysis and fatty acid synthesis from glucose in sheep adipose tissue.
    Robertson JP; Faulkner A; Vernon RG
    Biochem J; 1982 Sep; 206(3):577-86. PubMed ID: 7150263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in glucose metabolism in chick-embryo cells transformed by Rous sarcoma virus: intracellular levels of glycolytic intermediates.
    Singh VN; Singh M; August JT; Horecker BL
    Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4129-32. PubMed ID: 4372608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of grass and concentrate diets on the specific activities of some enzymes of hepatic carbohydrate metabolism in sheep.
    Pearce J; Unsworth EF
    Br J Nutr; 1976 May; 35(3):407-11. PubMed ID: 5105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens.
    de Vries W; Rietveld-Struijk RM; Stouthamer AH
    Antonie Van Leeuwenhoek; 1977; 43(2):153-67. PubMed ID: 202192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lactate metabolism by Veillonella parvula.
    Ng SK; Hamilton IR
    J Bacteriol; 1971 Mar; 105(3):999-1005. PubMed ID: 4323300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Demonstration of a heterogeneous distribution of glycolytic enzymes and of pyruvate kinase isoenzymes types M1 and M2 in unfertilized hen eggs.
    Noda S; Schoner W
    Biochim Biophys Acta; 1986 Dec; 884(3):395-401. PubMed ID: 2946322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2-phosphoglycerate phosphatase and serine biosynthesis in Veillonella alcalescens.
    Pestka JJ; Delwiche EA
    Can J Microbiol; 1981 Aug; 27(8):808-14. PubMed ID: 6271379
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae.
    Caubet R; Guerin B; Guerin M
    Arch Microbiol; 1988; 149(4):324-9. PubMed ID: 2833196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Association of glycolytic enzymes with the cytoplasmic side of the plasma membrane of glioma cells.
    Daum G; Keller K; Lange K
    Biochim Biophys Acta; 1988 Apr; 939(2):277-81. PubMed ID: 3355818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the long term control of glycolysis in Chlorella pyrenoidosa during glucose and ammonium assimilation in the light.
    Tomova N; Setchenska M; Dimitrieva L; Detchev G; Dimova O
    Arch Mikrobiol; 1973 May; 91(2):149-62. PubMed ID: 4268674
    [No Abstract]   [Full Text] [Related]  

  • 33. Acetate kinase from Veillonella alcalescens. Regulation of enzyme activity by succinate and substrates.
    Bowman CM; Valdez RO; Nishimura JS
    J Biol Chem; 1976 May; 251(10):3117-21. PubMed ID: 178662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in activity of the regulatory glycolytic enzymes and of the pyruvate-dehydrogenase complex during the development of Xenopus laevis.
    Raddatz E; Løvtrup-Rein H
    Exp Cell Biol; 1986; 54(1):53-60. PubMed ID: 2937670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pasteur effect and phosphofructokinase.
    Ramaiah A
    Curr Top Cell Regul; 1974; 8(0):297-345. PubMed ID: 4370999
    [No Abstract]   [Full Text] [Related]  

  • 37. The glycolytic pathway in adult liver fluke, Fasciola hepatica.
    Prichard RK; Schofield PJ
    Comp Biochem Physiol; 1968 Mar; 24(3):697-710. PubMed ID: 4297078
    [No Abstract]   [Full Text] [Related]  

  • 38. Glycolytic enzymes from human neuroectodermal tumors of childhood.
    Beemer FA; Vlug AM; Rousseau-Merck MF; van Veelen CW; Rijksen G; Staal GE
    Eur J Cancer Clin Oncol; 1984 Feb; 20(2):253-9. PubMed ID: 6323186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stereochemistry of phosphoryl transfer.
    Lowe G; Cullis PM; Jarvest RL; Potter BV; Sproat BS
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):75-92. PubMed ID: 6115426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Demonstration of a novel glycolytic pathway in the hyperthermophilic archaeon Thermococcus zilligii by (13)C-labeling experiments and nuclear magnetic resonance analysis.
    Xavier KB; da Costa MS; Santos H
    J Bacteriol; 2000 Aug; 182(16):4632-6. PubMed ID: 10913099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.