These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 5461016)
1. The use of kinetic models to analyze differentiation. Wright BE Behav Sci; 1970 Jan; 15(1):37-45. PubMed ID: 5461016 [No Abstract] [Full Text] [Related]
2. Uridine diphosphoglucose biosynthesis during differentiation in the cellular slime mold. II. In vitro measurements. Pannbacker RG Biochemistry; 1967 May; 6(5):1287-93. PubMed ID: 6068283 [No Abstract] [Full Text] [Related]
3. A kinetic model of metabolism essential to differentiation in Dictyostelium discoideum. Wright B; Simon W; Walsh BT Proc Natl Acad Sci U S A; 1968 Jun; 60(2):644-51. PubMed ID: 5248821 [No Abstract] [Full Text] [Related]
4. Expansion of the kinetic model of differentiation in Dictyostelium discoideum. Wright BE; Gustafson GL J Biol Chem; 1972 Dec; 247(24):7875-84. PubMed ID: 4344984 [No Abstract] [Full Text] [Related]
5. Synchrony of enzyme accumulation in a population of differentiating slime mold cells. Newell PC; Ellingson JS; Sussman M Biochim Biophys Acta; 1969 May; 177(3):610-4. PubMed ID: 4239607 [No Abstract] [Full Text] [Related]
6. Precursor-product relationships between nucleotides and RNA during differentiation in Dictyostelium discoideum. Rutherford CL; Kong WY; Park D; Wright BE J Gen Microbiol; 1974 Sep; 84(1):173-87. PubMed ID: 4474352 [No Abstract] [Full Text] [Related]
7. Increase of uridine kinase activity in Escherichia coli B following T2-phage infection or chloramphenicol treatment. Pravdina NF; Galegov GA Biochim Biophys Acta; 1968 Aug; 166(1):279-82. PubMed ID: 4880559 [No Abstract] [Full Text] [Related]
8. METASIM, a general purpose metabolic stimulator for studying cellular transformations. Park DJ; Wright BE Comput Programs Biomed; 1973 Mar; 3(1):10-26. PubMed ID: 4735157 [No Abstract] [Full Text] [Related]
9. Uridine diphosphoglucose biosynthesis during differentiation in the cellular slime mold. I. In vivo measurements. Pannbacker RG Biochemistry; 1967 May; 6(5):1283-6. PubMed ID: 6068282 [No Abstract] [Full Text] [Related]
10. The enzymatic steps of pyrimidine biosynthesis in the unfertilized frog egg. Lan SJ; Sallach HJ; Cohen PP Biochemistry; 1969 Sep; 8(9):3673-80. PubMed ID: 5820662 [No Abstract] [Full Text] [Related]
11. Glycogen metabolism during differentiation in Dictyostelium discoideum. Wright BE; Rosness P; Jones TH; Marshall R Ann N Y Acad Sci; 1973 Feb; 210():51-63. PubMed ID: 4349002 [No Abstract] [Full Text] [Related]
12. 2-thiouridine 5'-phosphate and its inhibition of aspartate transcarbamylase. Goodrich ME; Cardeilhac P Biochim Biophys Acta; 1970 Dec; 222(3):621-6. PubMed ID: 4924866 [No Abstract] [Full Text] [Related]
13. Activities of glycolytic enzymes during the early stages of differentiation in the cellular slime mold Dictyostelium discoideum. Cleland SV; Coe EL Biochim Biophys Acta; 1968 Feb; 156(1):44-50. PubMed ID: 4296372 [No Abstract] [Full Text] [Related]
14. Evidence for temporal and quantitative control of genetic transcription and translation during slime mold development. Sussman M Fed Proc; 1967; 26(1):77-83. PubMed ID: 4163659 [No Abstract] [Full Text] [Related]
15. Changes in RNA synthesis associated with differentiation (sporulation) in Physarum polycephalum. Sauer HW; Babcock KL; Rusch HP Biochim Biophys Acta; 1969 Dec; 195(2):410-21. PubMed ID: 5392097 [No Abstract] [Full Text] [Related]
16. Time of appearance of deoxythymidylate kinase and deoxythymidylate synthetase and of their templates in isoproterenol-stimulated deoxyribonucleic acid synthesis. Pegoraro L; Baserga R Lab Invest; 1970 Mar; 22(3):266-71. PubMed ID: 5436519 [No Abstract] [Full Text] [Related]
17. Inorganic polyphosphates and enzymes of polyphosphate metabolism in the cellular slime mold Dictyostelium discoideum. Gezelius K Arch Microbiol; 1974 Jul; 98(4):311-29. PubMed ID: 4367840 [No Abstract] [Full Text] [Related]
18. Pyrimidine nucleotide synthesis in the normal and hypertrophying rat heart. Relative importance of the de novo and "salvage" pathways. Matsushita S; Fanburg BL Circ Res; 1970 Sep; 27(3):415-28. PubMed ID: 5456756 [No Abstract] [Full Text] [Related]