These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 5461220)

  • 61. The mechanism of activation of skeletal muscle phosphorylase A by glycogen.
    Metzger B; Helmireich E; Glaser L
    Proc Natl Acad Sci U S A; 1967 Apr; 57(4):994-1001. PubMed ID: 5231360
    [No Abstract]   [Full Text] [Related]  

  • 62. Interaction of phosphorylase b with eosin. Influence of substrate and effectors on eosin-enzyme complexes.
    Oikonomakos NG; Sotiroudis TG; Evangelopoulos AE
    Biochem J; 1979 Aug; 181(2):309-20. PubMed ID: 227359
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Studies on the SH groups of phosphorylase b. Reaction with 5,5'-dithiobis-(2-nitrobenzoic acid).
    Kleppe K; Damjanovich S
    Biochim Biophys Acta; 1969 Jul; 185(1):88-102. PubMed ID: 5804392
    [No Abstract]   [Full Text] [Related]  

  • 64. Amino acid sequence of the phosphorylated site in rabbit liver glycogen phosphorylase.
    Wolf DP; Fischer EH; Krebs EG
    Biochemistry; 1970 Apr; 9(9):1923-9. PubMed ID: 5442160
    [No Abstract]   [Full Text] [Related]  

  • 65. Mechanism of nicotinamide-adenine dinucleotide binding to rabbit muscle glyceraldehyde 3-phosphate dehydrogenase.
    Hammes GG; Lillford PJ; Simplicio J
    Biochemistry; 1971 Sep; 10(20):3686-93. PubMed ID: 4328869
    [No Abstract]   [Full Text] [Related]  

  • 66. [Kinetics of kinase phosphorylase action in a cascade enzymatic system. I. Theoretical basis of a method for determining phosphorylase kinase activity].
    Kurganov BI
    Biokhimiia; 1994 Jun; 59(6):838-43. PubMed ID: 8075247
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase.
    Watson KA; Schinzel R; Palm D; Johnson LN
    EMBO J; 1997 Jan; 16(1):1-14. PubMed ID: 9009262
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Allosteric transitions of phosphofructokinase of E. coli and phosphorylase B of rabbitmuscle].
    Blangy D; Buc H
    Bull Soc Chim Biol (Paris); 1967 Dec; 49(11):1473-8. PubMed ID: 4230255
    [No Abstract]   [Full Text] [Related]  

  • 69. [Quaternary structure of glycogen synthetase I from rabbit skeletal muscles].
    Evstaf'eva OL; Sakharova IS; Solov'eva GA
    Biokhimiia; 1978 Jan; 43(1):174-9. PubMed ID: 414790
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glycogen-bound phosphorylase in Cryptococcus laurentii.
    Schultz JC; Ankel H
    Biochim Biophys Acta; 1970 Jul; 215(1):39-51. PubMed ID: 5531283
    [No Abstract]   [Full Text] [Related]  

  • 71. Effect of thiol blocking and substrate binding on the conformation and conformational stability of rabbit muscle aldolase.
    Závodszky P; Biszku E; Abaturov LV; Szabolcsi G
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(1):1-10. PubMed ID: 5084287
    [No Abstract]   [Full Text] [Related]  

  • 72. Free energy of subunit interactions. Hemerythrin.
    Langerman NR; Klotz IM
    Biochemistry; 1969 Dec; 8(12):4746-52. PubMed ID: 4312452
    [No Abstract]   [Full Text] [Related]  

  • 73. Starch degrading and synthesizing enzymes: a discussion of their properties and action pattern.
    Greenwood CT; Milne EA
    Adv Carbohydr Chem Biochem; 1968; 23():281-366. PubMed ID: 4882957
    [No Abstract]   [Full Text] [Related]  

  • 74. Cooperative binding to linear biopolymers. 1. Fundamental static and dynamic properties.
    Schwarz G
    Eur J Biochem; 1970 Feb; 12(3):442-53. PubMed ID: 5440621
    [No Abstract]   [Full Text] [Related]  

  • 75. Equilibrium and kinetic studies of the helix-coil transition in alpha 1-CB2, a small peptide from collagen.
    Piez KA; Sherman MR
    Biochemistry; 1970 Oct; 9(21):4134-40. PubMed ID: 5458645
    [No Abstract]   [Full Text] [Related]  

  • 76. Determination of equilibrium constants of associating protein systems. Graphical analysis for discrete and indefinite association.
    Chun PW; Kim SJ
    Biochemistry; 1970 Apr; 9(9):1957-61. PubMed ID: 5442164
    [No Abstract]   [Full Text] [Related]  

  • 77. Irreversible enzyme inhibitors. CIV. Inhibitors of thymidine phosphorylase. 8. Further studies on hydrophobic bonding with 6-substituted uracils.
    Baker BR; Rzeszotarski W
    J Med Chem; 1967 Nov; 10(6):1109-13. PubMed ID: 6056039
    [No Abstract]   [Full Text] [Related]  

  • 78. The influence of binding domains on the nature of subunit interactions in oligomeric proteins. Application to unusual kinetic and binding patterns.
    Cornish-Bowden A; Koshland DE
    J Biol Chem; 1970 Dec; 245(23):6241-50. PubMed ID: 5484808
    [No Abstract]   [Full Text] [Related]  

  • 79. Remarks on the kinetics of enzymes with interacting effector molecules. Tests of a configurational hypothesis in a quasi-equilibrium model.
    Whitehead E
    Biochemistry; 1970 Mar; 9(6):1440-53. PubMed ID: 5418377
    [No Abstract]   [Full Text] [Related]  

  • 80. Structure--activity relationships in thymidine phosphorylase inhibitors. A correlation using substituent constants and regression analysis.
    Coats E; Glave WR; Hansch C
    J Med Chem; 1970 Sep; 13(5):913-9. PubMed ID: 5458381
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.