These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 5463573)

  • 1. Production of chlorflavonin, an antifungal metabolite of Aspergillus candidus.
    Munden JE; Butterworth D; Hanscomb G; Verrall MS
    Appl Microbiol; 1970 May; 19(5):718-20. PubMed ID: 5463573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biosynthetic origin of chlorflavonin, a flavonoid antibiotic from Aspergillus candidus.
    Marchelli R; Vining LC
    Can J Biochem; 1973 Dec; 51(12):1624-9. PubMed ID: 4775434
    [No Abstract]   [Full Text] [Related]  

  • 3. Microbial glycosylation of antitubercular agent chlorflavonin.
    Ren J; Zhan J
    J Biosci Bioeng; 2023 Nov; 136(5):366-373. PubMed ID: 37743150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of mycobacillin and versicolin as agricultural fungicides. III. Growth pattern and antibiotic production in soil by Aspergillus versicolor.
    Chattopadhyay JP; De BK; Nandi J; Bose SK
    J Antibiot (Tokyo); 1977 Mar; 30(3):234-8. PubMed ID: 863784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboflavin formation by mould fungi cultivated on hydrocarbon-containing media.
    Sabry SA; el-Refai AH; Gamati SY
    Microbios; 1989; 57(230):33-40. PubMed ID: 2739581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of chlorflavonin.
    Bird AE; Marshall AC
    J Chem Soc Perkin 1; 1969; 18():2418-20. PubMed ID: 5391291
    [No Abstract]   [Full Text] [Related]  

  • 7. Production of D-mannitol by conidia of Aspergillus candidus.
    Nelson GE; Johnson DE; Ciegler A
    Appl Microbiol; 1971 Sep; 22(3):484-5. PubMed ID: 5119211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45.
    Leifert C; Li H; Chidburee S; Hampson S; Workman S; Sigee D; Epton HA; Harbour A
    J Appl Bacteriol; 1995 Feb; 78(2):97-108. PubMed ID: 7698955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Papulacandins, a new family of antibiotics with antifungal activity, I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E.
    Traxler P; Gruner J; Auden JA
    J Antibiot (Tokyo); 1977 Apr; 30(4):289-96. PubMed ID: 324958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides.
    Kneifel H; König WA; Loeffler W; Müller R
    Arch Microbiol; 1977 May; 113(1-2):121-30. PubMed ID: 560831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production, isolation, and antimicrobial activity of hyalodendrin, a new antibiotic produced by a species of Hyalodendron.
    Stillwell MA; Magasi LP; Strunz GM
    Can J Microbiol; 1974 May; 20(5):759-64. PubMed ID: 4832258
    [No Abstract]   [Full Text] [Related]  

  • 12. Production, isolation, and antifungal activity of scytalidin, a metabolite of Scytalidium species.
    Stillwell MA; Wall RE; Strunz GM
    Can J Microbiol; 1973 May; 19(5):597-602. PubMed ID: 4736196
    [No Abstract]   [Full Text] [Related]  

  • 13. Mulundocandin, a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation and characterization.
    Roy K; Mukhopadhyay T; Reddy GC; Desikan KR; Ganguli BN
    J Antibiot (Tokyo); 1987 Mar; 40(3):275-80. PubMed ID: 3570979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upstream and downstream processing of lovastatin by Aspergillus terreus.
    Mukhtar H; Ijaz SS; Ikram-ul-Haq
    Cell Biochem Biophys; 2014 Sep; 70(1):309-20. PubMed ID: 24671671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating aeration and stirring effects to improve itaconic acid production from glucose using Aspergillus terreus.
    Nemestóthy N; Bakonyi P; Komáromy P; Bélafi-Bakó K
    Biotechnol Lett; 2019 Dec; 41(12):1383-1389. PubMed ID: 31617036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-657,398, a novel antifungal agent: fermentation, isolation, structural elucidation and biological properties.
    Schwartz RE; Liesch J; Hensens O; Zitano L; Honeycutt S; Garrity G; Fromtling RA; Onishi J; Monaghan R
    J Antibiot (Tokyo); 1988 Dec; 41(12):1774-9. PubMed ID: 3209471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neo-enactin, a new antifungal antibiotic potentiating polyene antifungal antibiotics. I. Fermentation, extraction, purification and physico-chemical and biological properties.
    Kondo H; Sumomogi H; Otani T; Nakamura S
    J Antibiot (Tokyo); 1979 Jan; 32(1):13-7. PubMed ID: 761990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus.
    Bracarense AA; Takahashi JA
    Braz J Microbiol; 2014; 45(1):313-21. PubMed ID: 24948950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on versicolin, a new antifungal antibiotic from Aspergillus versicolor. 3. Relationship between antibiotic synthesis and basic cellular metabolism.
    Dhar AK; Bose SK
    Acta Microbiol Pol; 1968; 17(4):327-30. PubMed ID: 4178170
    [No Abstract]   [Full Text] [Related]  

  • 20. Naphthalenone production in Aspergillus parvulus.
    Bartman CD; Campbell IM
    Can J Microbiol; 1979 Feb; 25(2):130-7. PubMed ID: 436011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.