These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 5466067)

  • 1. A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase.
    Beauchamp C; Fridovich I
    J Biol Chem; 1970 Sep; 245(18):4641-6. PubMed ID: 5466067
    [No Abstract]   [Full Text] [Related]  

  • 2. Substrate-induced chemiluminescence of xanthine oxidase and aldehyde oxidase.
    Arneson RM
    Arch Biochem Biophys; 1970 Feb; 136(2):352-60. PubMed ID: 4244885
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical is not a product of the reaction of xanthine oxidase and xanthine. The confounding problem of adventitious iron bound to xanthine oxidase.
    Britigan BE; Pou S; Rosen GM; Lilleg DM; Buettner GR
    J Biol Chem; 1990 Oct; 265(29):17533-8. PubMed ID: 2170383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase.
    Fridovich I
    J Biol Chem; 1970 Aug; 245(16):4053-7. PubMed ID: 5496991
    [No Abstract]   [Full Text] [Related]  

  • 6. Free oxygen radicals contribute to platelet aggregation and cyclic flow variations in stenosed and endothelium-injured canine coronary arteries.
    Ikeda H; Koga Y; Oda T; Kuwano K; Nakayama H; Ueno T; Toshima H; Michael LH; Entman ML
    J Am Coll Cardiol; 1994 Dec; 24(7):1749-56. PubMed ID: 7963124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals.
    Kaneko M; Singal PK; Dhalla NS
    Basic Res Cardiol; 1990; 85(1):45-54. PubMed ID: 2158297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of ethylene. Formation of ethylene from methional by a cell-free enzyme system from cauliflower florets.
    Mapson LW; Wardale DA
    Biochem J; 1967 Feb; 102(2):574-85. PubMed ID: 6032971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system.
    Kellogg EW; Fridovich I
    J Biol Chem; 1975 Nov; 250(22):8812-7. PubMed ID: 171266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen metabolite-induced cytotoxicity to cultured rat gastric mucosal cells.
    Hiraishi H; Terano A; Ota S; Ivey KJ; Sugimoto T
    Am J Physiol; 1987 Jul; 253(1 Pt 1):G40-8. PubMed ID: 3111274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen.
    Massey V; Strickland S; Mayhew SG; Howell LG; Engel PC; Matthews RG; Schuman M; Sullivan PA
    Biochem Biophys Res Commun; 1969 Sep; 36(6):891-7. PubMed ID: 5388670
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of oxygen radicals on cerebral arterioles.
    Wei EP; Christman CW; Kontos HA; Povlishock JT
    Am J Physiol; 1985 Feb; 248(2 Pt 2):H157-62. PubMed ID: 3918462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reaction of xanthine oxidase with molecular oxygen.
    Olson JS; Ballow DP; Palmer G; Massey V
    J Biol Chem; 1974 Jul; 249(14):4350-62. PubMed ID: 4367214
    [No Abstract]   [Full Text] [Related]  

  • 16. Ethanol oxidation by hydroxyl radicals: role of iron chelates, superoxide, and hydrogen peroxide.
    Feierman DE; Winston GW; Cederbaum AI
    Alcohol Clin Exp Res; 1985; 9(2):95-102. PubMed ID: 2988364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active oxygen species at the origin of sister chromatid exchanges.
    Emerit I
    Basic Life Sci; 1984; 29 Pt A():127-40. PubMed ID: 6099716
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of xanthine/xanthine oxidase generated reactive oxygen species on synaptic transmission.
    Colton C; Yao J; Grossman Y; Gilbert D
    Free Radic Res Commun; 1991; 14(5-6):385-93. PubMed ID: 1663906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Styrene oxidation to styrene oxide by hydroxyl radicals produced during reaction of xanthine with xanthine oxidase in the presence of Fe3+.
    Belvedere G; Tursi F
    Toxicol Lett; 1983 Apr; 16(1-2):123-9. PubMed ID: 6301106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.