These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 5467924)

  • 41. Effect of conformation on the binding of flavins to flavoenzymes.
    Rajagopalan KV; Brady FO; Kanda M
    Vitam Horm; 1970; 28():303-14. PubMed ID: 4334957
    [No Abstract]   [Full Text] [Related]  

  • 42. Oxidation-reduction potentials of molybdenum, flavin and iron-sulphur centres in milk xanthine oxidase.
    Cammack R; Barber MJ; Bray RC
    Biochem J; 1976 Aug; 157(2):469-78. PubMed ID: 183752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purine N-oxides. 28. The reduction of purine N-oxides by xanthine oxidase.
    Stöhrer G; Brown GB
    J Biol Chem; 1969 May; 244(9):2498-502. PubMed ID: 4306516
    [No Abstract]   [Full Text] [Related]  

  • 44. A quantitative study of skeletal-muscle purines and pyrazolo(3,4-d)pyrimidines in gout patients treated with allopurinol.
    Watts RW; Snedden W; Parker RA
    Clin Sci; 1971 Aug; 41(2):153-8. PubMed ID: 5564305
    [No Abstract]   [Full Text] [Related]  

  • 45. DIRECT STUDIES ON THE ELECTRON TRANSFER SEQUENCE IN XANTHINE OXIDASE BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. I. TECHNIQUES AND DESCRIPTION OF SPECTRA.
    PALMER G; BRAY RC; BEINERT H
    J Biol Chem; 1964 Aug; 239():2657-66. PubMed ID: 14235550
    [No Abstract]   [Full Text] [Related]  

  • 46. Oxypurinol as an inhibitor of xanthine oxidase-catalyzed production of superoxide radical.
    Spector T
    Biochem Pharmacol; 1988 Jan; 37(2):349-52. PubMed ID: 2829916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of N-aryl-5-amino-4-cyanopyrazole derivatives as potent xanthine oxidase inhibitors.
    Gupta S; Rodrigues LM; Esteves AP; Oliveira-Campos AM; Nascimento MS; Nazareth N; Cidade H; Neves MP; Fernandes E; Pinto M; Cerqueira NM; Brás N
    Eur J Med Chem; 2008 Apr; 43(4):771-80. PubMed ID: 17692432
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of bovine xanthine oxidase and the subunit structures of some iron flavoproteins.
    Nelson CA; Handler P
    J Biol Chem; 1968 Oct; 243(20):5368-73. PubMed ID: 5702049
    [No Abstract]   [Full Text] [Related]  

  • 49. Investigation of xanthine oxidase. Magnetic circular dichroism studies.
    Bayer E; Bacher A; Krauss P; Voelter W; Barth G; Bunnenberg E; Djerassi C
    Eur J Biochem; 1971 Oct; 22(4):580-4. PubMed ID: 5128743
    [No Abstract]   [Full Text] [Related]  

  • 50. Iron-sulphur systems in some isolated multi-component oxidative enzymes.
    Bray RC; Barber MJ; Dalton H; Lowe DJ; Coughlan MP
    Biochem Soc Trans; 1975; 3(4):479-82. PubMed ID: 1237425
    [No Abstract]   [Full Text] [Related]  

  • 51. Formation of nucleotides of (6-14C)allopurinol and (6-14C)oxipurinol in rat tissues and effects on uridine nucleotide pools.
    Nelson DJ; Buggé CJ; Krasny HC; Elion GB
    Biochem Pharmacol; 1973 Aug; 22(16):2003-22. PubMed ID: 4353669
    [No Abstract]   [Full Text] [Related]  

  • 52. Relationship between plasma oxipurinol concentrations and xanthine oxidase activity in volunteers dosed with allopurinol.
    Day RO; Miners J; Birkett DJ; Graham GG; Whitehead A
    Br J Clin Pharmacol; 1988 Oct; 26(4):429-34. PubMed ID: 3190993
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The structure of the inhibitory complex of alloxanthine (1H-pyrazolo[3,4-d]pyrimidine-4,6-diol) with the molybdenum centre of xanthine oxidase from electron-paramagnetic-resonance spectroscopy.
    Hawkes TR; George GN; Bray RC
    Biochem J; 1984 Mar; 218(3):961-8. PubMed ID: 6326752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The nature of the sulphur atom liberated from xanthine oxidase by cyanide. Evidence from e.p.r. spectroscopy after 35S substitution.
    Malthouse JP; Bray RC
    Biochem J; 1980 Oct; 191(1):265-7. PubMed ID: 6258583
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of antiuric action of 4-oxy- and 4-thiopyrazolopyrimidines.
    Cartier PH; Hamet M
    Biochem Pharmacol; 1973 Dec; 22(23):3061-75. PubMed ID: 4761565
    [No Abstract]   [Full Text] [Related]  

  • 56. N-Hydroxyguanidine compound 1-(3,4-dimethoxy- 2-chlorobenzylideneamino)-3-hydroxyguanidine inhibits the xanthine oxidase mediated generation of superoxide radical.
    Dambrova M; Baumane L; Kiuru A; Kalvinsh I; Wikberg JE
    Arch Biochem Biophys; 2000 May; 377(1):101-8. PubMed ID: 10775447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bovine milk xanthine oxidase fractions of improved potency; isolation of molybdenum-free, iron-poor, active preparations.
    Roussos GG; Morrow BH
    Biochem Biophys Res Commun; 1967 Nov; 29(3):388-93. PubMed ID: 5624541
    [No Abstract]   [Full Text] [Related]  

  • 58. On the specificity of allopurinol and oxypurinol as inhibitors of xanthine oxidase. A pulse radiolysis determination of rate constants for reaction of allopurinol and oxypurinol with hydroxyl radicals.
    Hoey BM; Butler J; Halliwell B
    Free Radic Res Commun; 1988; 4(4):259-63. PubMed ID: 2852627
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-type enzyme and of a variant lacking iron-sulfur centers.
    Hughes RK
    Biochemistry; 1992 Mar; 31(12):3073-83. PubMed ID: 1313286
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The synthesis and xanthine oxidase inhibitory activity of pyrazolo(3,4-d)pyrimidines.
    Kobayashi S
    Chem Pharm Bull (Tokyo); 1973 May; 21(5):941-51. PubMed ID: 4727362
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.