These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 547016)
1. Effect of thyroidectomy upon the activity of three mitochondrial shuttles in rats. Tobin RB; Berdanier CD; Ecklund RE J Environ Pathol Toxicol; 1979 Dec; 3(1-2):307-14. PubMed ID: 547016 [TBL] [Abstract][Full Text] [Related]
2. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng L; Bremer J; Davis EJ J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472 [TBL] [Abstract][Full Text] [Related]
3. Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria. Scholz TD; TenEyck CJ; Schutte BC J Mol Cell Cardiol; 2000 Jan; 32(1):1-10. PubMed ID: 10652185 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial shuttle activities in hyperthyroid and normal rats and guinea pigs. Tobin RB; Berdanier CD; Ecklund RE; DeVore V; Caton C J Environ Pathol Toxicol; 1979 Dec; 3(1-2):289-305. PubMed ID: 232712 [No Abstract] [Full Text] [Related]
5. Fatty acid oxidation, substrate shuttles, and activity of the citric acid cycle in hepatocellular carcinomas of varying differentiation. Cederbaum AI; Rubin E Cancer Res; 1976 Sep; 36(9 pt.1):2980-7. PubMed ID: 184936 [TBL] [Abstract][Full Text] [Related]
6. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. Rupert BE; Segar JL; Schutte BC; Scholz TD J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004 [TBL] [Abstract][Full Text] [Related]
7. Mitochondria from the left heart ventricles of both normotensive and spontaneously hypertensive rats oxidize externally added NADH mostly via a novel malate/oxaloacetate shuttle as reconstructed in vitro. Atlante A; Seccia TM; De Bari L; Marra E; Passarella S Int J Mol Med; 2006 Jul; 18(1):177-86. PubMed ID: 16786170 [TBL] [Abstract][Full Text] [Related]
8. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. McKenna MC; Waagepetersen HS; Schousboe A; Sonnewald U Biochem Pharmacol; 2006 Feb; 71(4):399-407. PubMed ID: 16368075 [TBL] [Abstract][Full Text] [Related]
9. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart. Scholz TD; Koppenhafer SL Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820 [TBL] [Abstract][Full Text] [Related]
10. Thyroid hormone and dehydroepiandrosterone permit gluconeogenic hormone responses in hepatocytes. Kneer N; Lardy H Arch Biochem Biophys; 2000 Mar; 375(1):145-53. PubMed ID: 10683260 [TBL] [Abstract][Full Text] [Related]
11. [Effect of NAD recirculation on the mechanism of ATP stabilization in cytoplasm. Mathematical models]. Dynnik VV; Sel'kov EE; Ovchinnikov IA Biokhimiia; 1977 Sep; 42(9):1567-76. PubMed ID: 199286 [TBL] [Abstract][Full Text] [Related]
12. Hepatic mitochondrial respiration and transport of reducing equivalents in rats fed an energy dense diet. Iossa S; Mollica MP; Lionetti L; Barletta A; Liverini G Int J Obes Relat Metab Disord; 1995 Aug; 19(8):539-43. PubMed ID: 7489023 [TBL] [Abstract][Full Text] [Related]
13. In vivo and in vitro adenosine stimulation of ethanol oxidation by hepatocytes, and the role of the malate-aspartate shuttle. Hernández-Muñoz R; Díaz-Muñoz M; Chagoya de Sánchez V Biochim Biophys Acta; 1987 Sep; 930(2):254-63. PubMed ID: 2887212 [TBL] [Abstract][Full Text] [Related]
14. [Possible role of adenine nucleotide transport in regulating the respiration of rat liver mitochondria]. Konstantinov IuM; Liakhovich VV; Panov AV Biull Eksp Biol Med; 1976 Feb; 81(2):166-8. PubMed ID: 1276407 [TBL] [Abstract][Full Text] [Related]
15. The inhibition by methylmalonic acid of malate transport by the dicarboxylate carrier in rat liver mitochondria. A possible explantation for hypoglycemia in methylmalonic aciduria. Halperin ML; Schiller CM; Fritz IB J Clin Invest; 1971 Nov; 50(11):2276-82. PubMed ID: 4398537 [TBL] [Abstract][Full Text] [Related]
16. Ultrastructural and biochemical aspects of liver mitochondria during recovery from ethanol-induced alterations. Experimental evidence of mitochondrial division. Koch OR; Roatta de Conti LL; Bolaños LP; Stoppani AO Am J Pathol; 1978 Feb; 90(2):325-44. PubMed ID: 623205 [TBL] [Abstract][Full Text] [Related]
17. The function of redox shuttles during aerobic glycolysis in two strains of Ehrlich ascites tumor cells. Sánchez-Jiménez F; Martínez P; Núñez de Castro I; Olavarría JS Biochimie; 1985 Feb; 67(2):259-64. PubMed ID: 4005310 [TBL] [Abstract][Full Text] [Related]
18. Age-specific development of malate-aspartate shuttle in the liver and kidney of mice. Sharma R; Dey S; Verma R Biochem Int; 1992 Sep; 27(6):1059-66. PubMed ID: 1445374 [TBL] [Abstract][Full Text] [Related]
19. Reconstitution of malate-aspartate and alpha-glycerophosphate shuttle activity in rat skeletal muscle mitochondria. Bookelman H; Trijbels JM; Sengers RC; Janssen AJ; Veerkamp JH; Stadhouders AM Int J Biochem; 1979; 10(5):411-4. PubMed ID: 225221 [No Abstract] [Full Text] [Related]
20. Influence of diet composition on serum triiodothyronine (T3) concentration, hepatic mitochondrial metabolism and shuttle system activity in rats. Tyzbir RS; Kunin AS; Sims NM; Danforth E J Nutr; 1981 Feb; 111(2):252-9. PubMed ID: 6257866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]