These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A correlation of the alpha-bungarotoxin binding sites (acetylcholine receptors) and intramembranous particles in denervated skeletal muscle of rat. Tipnis UR; Malhotra SK Cytobios; 1981; 31(122):91-106. PubMed ID: 7318510 [TBL] [Abstract][Full Text] [Related]
3. The effects of acute and chronic botulinum toxin treatment on receptor number, receptor distribution and tissue sensitivity in rat diaphragm. Simpson LL J Pharmacol Exp Ther; 1977 Feb; 200(2):343-51. PubMed ID: 839441 [TBL] [Abstract][Full Text] [Related]
4. [Sites of synthesis of acetylcholine receptors in denervated muscles]. Giacobini Robecchi MG; Garelli M; Filogamo G Bull Assoc Anat (Nancy); 1980 Sep; 64(186):387-90. PubMed ID: 7214035 [TBL] [Abstract][Full Text] [Related]
5. Binding of alpha-bungarotoxin and cholinergic ligands to acetylcholine receptors in the membrane of skeletal muscle. Barnard EA; Coates V; Dolly JO; Mallick B Cell Biol Int Rep; 1977 Jan; 1(1):99-106. PubMed ID: 610870 [TBL] [Abstract][Full Text] [Related]
6. Clusters of intramembrane particles associated with binding sites for alpha-bungarotoxin in cultured chick myotubes. Cohen SA; Pumplin DW J Cell Biol; 1979 Aug; 82(2):494-516. PubMed ID: 479313 [TBL] [Abstract][Full Text] [Related]
7. Appearance of new acetylcholine receptors on the baby chick biventer cervicis and denervated rat diaphragm muscles after blockade with alpha-bungarotoxin. Chiung Chang C; Jai Su M; Hsien Tung L J Physiol; 1977 Jun; 268(2):449-65. PubMed ID: 874917 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the actions of carbamate anticholinesterases on the nicotinic acetylcholine receptor. Sherby SM; Eldefrawi AT; Albuquerque EX; Eldefrawi ME Mol Pharmacol; 1985 Mar; 27(3):343-8. PubMed ID: 3974572 [TBL] [Abstract][Full Text] [Related]
9. The preparation of a sarcolemmal fraction from evacuated muscle slices. Wallis I; Koenig E; Rose S Biochim Biophys Acta; 1980 Jul; 599(2):505-17. PubMed ID: 7407105 [TBL] [Abstract][Full Text] [Related]
10. Acetylcholine receptor in myasthenia gravis: increased affinity for alpha-bungarotoxin. Elias SB; Appel SH Ann Neurol; 1978 Sep; 4(3):250-2. PubMed ID: 718136 [TBL] [Abstract][Full Text] [Related]
11. Heterogeneity of acetylcholine receptors: different forms of receptor distinguished by alpha-bungarotoxin kinetics and by antibody binding properties. Massa T; Mittag TW J Pharmacol Exp Ther; 1983 Nov; 227(2):340-8. PubMed ID: 6631716 [TBL] [Abstract][Full Text] [Related]
12. Denervated skeletal muscle fibers develop discrete patches of high acetylcholine receptor density. Ko PK; Anderson MJ; Cohen MW Science; 1977 Apr; 196(4289):540-2. PubMed ID: 850796 [TBL] [Abstract][Full Text] [Related]
13. Localization of synaptic and nonsynaptic nicotinic-acetylcholine receptors in the goldfish retina. Zucker C; Yazulla S J Comp Neurol; 1982 Jan; 204(2):188-95. PubMed ID: 6276449 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of alpha-bungarotoxin binding to acetylcholine receptors by antisera from animals with experimental autoimmune myasthenia gravis. Claudio T; Raftery MA J Supramol Struct; 1980; 14(3):267-79. PubMed ID: 6971372 [TBL] [Abstract][Full Text] [Related]
15. Control of acetylcholine receptors in skeletal muscle. Fambrough DM Physiol Rev; 1979 Jan; 59(1):165-227. PubMed ID: 375254 [TBL] [Abstract][Full Text] [Related]
16. Concanavalin-A binding to acetylcholine receptors: identification of two forms of receptor in denervated rat muscle. Mittag TW; Massa T J Pharmacol Exp Ther; 1981 Jul; 218(1):27-33. PubMed ID: 7241383 [TBL] [Abstract][Full Text] [Related]