These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 5472182)

  • 21. Prematurity in the rat. II. Effect of hypothermia.
    Cuezva JM; Benito M; Moreno FJ; Medina JM
    Biol Neonate; 1980; 37(3-4):218-23. PubMed ID: 7362859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrauterine malnutrition in the rat: alterations of fetal glycerol metabolism.
    Wapnir RA; Mancusi VJ
    J Am Coll Nutr; 1983; 2(4):377-85. PubMed ID: 6655162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasma amino acid levels and development of hepatic gluconeogenesis in the newborn rat.
    Girard JR; Guillet I; Marty J; Marliss EB
    Am J Physiol; 1975 Aug; 229(2):466-73. PubMed ID: 1163673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo glycerol metabolism in the pregnant rat.
    Chaves JM; Herrara E
    Biol Neonate; 1980; 37(3-4):172-9. PubMed ID: 7362853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Serum glycerol and hepatic glycerokinase activity in the carbohydrate-sensitive BHE strain of rat.
    Gardner LB; Reiser S
    Proc Soc Exp Biol Med; 1976 Oct; 153(1):158-60. PubMed ID: 186795
    [No Abstract]   [Full Text] [Related]  

  • 26. Changes in patterns of enzymes of carbohydrate metabolism in the developing rat kidney.
    Burch HB; Kuhlman AM; Skerjance J; Lowry OH
    Pediatrics; 1971 Jan; 47(1):Suppl 2:199+. PubMed ID: 4323888
    [No Abstract]   [Full Text] [Related]  

  • 27. A comparison between the effects of cold exposure in vivo and of noradrenaline in vitro on the metabolism of the brown fat of new-born rabbits.
    Knight BL; Myant NB
    Biochem J; 1970 Aug; 119(1):103-11. PubMed ID: 5485744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus).
    Treberg JR; Lewis JM; Driedzic WR
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Jun; 132(2):433-8. PubMed ID: 12020659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans.
    Meyer C; Stumvoll M; Welle S; Woerle HJ; Haymond M; Gerich J
    Am J Physiol Endocrinol Metab; 2003 Oct; 285(4):E819-26. PubMed ID: 12959936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of mRNA levels and cellular localization in controlling sn-glycerol-3-phosphate dehydrogenase expression in tissues of the mouse.
    Ratner PL; Fisher M; Burkart D; Cook JR; Kozak LP
    J Biol Chem; 1981 Apr; 256(7):3576-9. PubMed ID: 6782104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycerol-3-phosphate dehydrogenase 1 deficiency induces compensatory amino acid metabolism during fasting in mice.
    Sato T; Yoshida Y; Morita A; Mori N; Miura S
    Metabolism; 2016 Nov; 65(11):1646-1656. PubMed ID: 27733253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lethal hypoglycemic ketosis and glyceroluria in mice lacking both the mitochondrial and the cytosolic glycerol phosphate dehydrogenases.
    Brown LJ; Koza RA; Marshall L; Kozak LP; MacDonald MJ
    J Biol Chem; 2002 Sep; 277(36):32899-904. PubMed ID: 12093800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial GCN5L1 regulates cytosolic redox state and hepatic gluconeogenesis via glycerol phosphate shuttle GPD2.
    Meng J; Zhang C; Wang D; Zhu L; Wang L
    Biochem Biophys Res Commun; 2022 Sep; 621():1-7. PubMed ID: 35802941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Effect of diet on enzyme activities in chicken liver.
    Harding JW; Pyeritz EA; Copeland ES; White HB
    Biochem J; 1975 Jan; 146(1):223-9. PubMed ID: 167714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase.
    Koza RA; Kozak UC; Brown LJ; Leiter EH; MacDonald MJ; Kozak LP
    Arch Biochem Biophys; 1996 Dec; 336(1):97-104. PubMed ID: 8951039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin and metabolic fate of plasma glycerol in the rat and rabbit fetus.
    Gilbert M
    Pediatr Res; 1977 Feb; 11(2):95-9. PubMed ID: 840507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prematurity in the rat. I. Fuels and gluconeogenic enzymes.
    Cuezva JM; Moreno FJ; Medina JM; Mayor F
    Biol Neonate; 1980; 37(1-2):88-95. PubMed ID: 6244006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The development of gluconeogenesis in rat liver. Controlling factors in the newborn.
    Ballard FJ
    Biochem J; 1971 Sep; 124(2):265-74. PubMed ID: 4333849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymes of glycerol and glyceraldehyde metabolism in mouse liver: effects of caloric restriction and age on activities.
    Hagopian K; Ramsey JJ; Weindruch R
    Biosci Rep; 2008 Apr; 28(2):107-15. PubMed ID: 18429748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sources of blood glucose in the rat fetus.
    Bossi E; Greenberg RE
    Pediatr Res; 1972 Oct; 6(10):765-72. PubMed ID: 4675228
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.