These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 5473124)

  • 21. Regional cerebral blood flow, intracranial pressure, and brain metabolism in comatose patients.
    Bruce DA; Langfitt TW; Miller JD; Schutz H; Vapalahti MP; Stanek A; Goldberg HI
    J Neurosurg; 1973 Feb; 38(2):131-44. PubMed ID: 4694215
    [No Abstract]   [Full Text] [Related]  

  • 22. Effects of increased intracranial pressure on cerebral blood flow and on cerebrospinal fluid HCO3, pH, lactate and pyruvate in dogs.
    Kjällquist A; Siesjö BK; Zwetnow N
    Acta Physiol Scand; 1969 Mar; 75(3):345-52. PubMed ID: 5790225
    [No Abstract]   [Full Text] [Related]  

  • 23. Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia.
    Nishimura N; Iwasaki K; Ogawa Y; Aoki K
    J Appl Physiol (1985); 2010 May; 108(5):1154-61. PubMed ID: 20224002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in pulmonary, somatic, and splanchnic perfusion with increased intracranial pressure.
    Berman IR; Ducker TB
    Surg Gynecol Obstet; 1969 Jan; 128(1):8-14. PubMed ID: 5251463
    [No Abstract]   [Full Text] [Related]  

  • 25. [The autoregulation of cerebral circulation].
    Agnoli A; Bozzao L
    Recenti Prog Med; 1969 Jan; 46(1):29-61. PubMed ID: 4893917
    [No Abstract]   [Full Text] [Related]  

  • 26. Elimination of autoregulation during arterial and cerebral hypoxia.
    Häggendal E
    Scand J Clin Lab Invest Suppl; 1968; 102():V:D. PubMed ID: 5707559
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of hypoxaemia on the cerebral blood flow of the dog under methoxyflurane anaesthesia.
    Mitra SK; Gray IG; Nisbet HI; Creighton RE; Aspin N
    Can Anaesth Soc J; 1971 Jul; 18(4):419-25. PubMed ID: 4945257
    [No Abstract]   [Full Text] [Related]  

  • 28. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uterine blood flow and oxygen uptake during maternal hyperventilation in monkeys at cesarean section.
    Parer JT; Eng M; Aoba H; Ueland K
    Anesthesiology; 1970 Feb; 32(2):130-5. PubMed ID: 4984195
    [No Abstract]   [Full Text] [Related]  

  • 30. [Macro- and microcirculatory shifts in the brain of cats during hypoxia and hypercapnia].
    Krasil'nikov VG; Artem'eva AI
    Fiziol Zh SSSR Im I M Sechenova; 1989 Oct; 75(10):1389-96. PubMed ID: 2515073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of increased intracranial pressure on cerebral blood flow and on cerebral venous pO2, pCO2, pH, lactate and pyruvate in dogs.
    Kjällquist A; Siesjö BK; Zwetnow N
    Acta Physiol Scand; 1969 Mar; 75(3):267-75. PubMed ID: 5790219
    [No Abstract]   [Full Text] [Related]  

  • 32. Spinal cord blood flow in dogs. 2. The effect of the blood gases.
    Griffiths IR
    J Neurol Neurosurg Psychiatry; 1973 Feb; 36(1):42-9. PubMed ID: 4691689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the relation between blood pressure and blood flow in the canine brain with particular regard to the mechanism responsible for cerebral blood flow autoregulation.
    Ekström-Jodal B
    Acta Physiol Scand Suppl; 1970; 350():1-61. PubMed ID: 5280807
    [No Abstract]   [Full Text] [Related]  

  • 34. The course of experimental cerebral infarction--the development of increased intracranial pressure.
    Halsey JH; Capra NF
    Stroke; 1972; 3(3):268-78. PubMed ID: 5034975
    [No Abstract]   [Full Text] [Related]  

  • 35. Hypoxia, alpha 2-adrenergic, and nitric oxide-dependent interactions on canine cerebral blood flow.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H476-82. PubMed ID: 7511347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observations on autoregulation in skeletal muscle: the effects of arterial hypoxia.
    Pohost GM; Newell JB; Hamlin NP; Powell WJ
    Cardiovasc Res; 1976 Jul; 10(4):405-12. PubMed ID: 947331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebral blood flow autoregulation during intracranial hypertension in hypoxic lambs.
    Borel CO; Backofen JE; Koehler RC; Jones MD; Traystman RJ
    Am J Physiol; 1987 Dec; 253(6 Pt 2):H1342-8. PubMed ID: 3122588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Changes in regional cerebral circulation in brain edema and the therapeutic influence of hyperventilation].
    Reulen HJ
    Z Prakt Anasth; 1971 Dec; 6(6):426-30. PubMed ID: 4259140
    [No Abstract]   [Full Text] [Related]  

  • 39. [Distribution of pO2 in cerebral neurons and capillaries in relation to blood flow velocity in normal conditions and in hypoxemia].
    Kisliakov IuIa; Ivanov KP
    Fiziol Zh SSSR Im I M Sechenova; 1974 Aug; 60(8):1216-22. PubMed ID: 4426437
    [No Abstract]   [Full Text] [Related]  

  • 40. Changes in blood flow and resistance in neonatal goats during hypoxia.
    Eitzman DV; Hessler JR; Cassin S
    Am J Physiol; 1969 Jun; 216(6):1577-82. PubMed ID: 5786748
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.