These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 5475878)

  • 41. Usnic acid and triacylglycerides production by the cultured lichen mycobiont of Ramalina celastri.
    Fazio AT; Adler MT; Maier MS
    Nat Prod Commun; 2014 Feb; 9(2):213-4. PubMed ID: 24689292
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The C4-dicarboxylic acid pathway of photosynthesis. Identification of intermediates and products and quantitative evidence for the route of carbon flow.
    Johnson HS; Hatch MD
    Biochem J; 1969 Aug; 114(1):127-34. PubMed ID: 5810044
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolism of the antihypertensive agent 1,4-dihydro-2,6-dimethyl-4-(2-trifluoromethylphenyl)-3,5-pyridinedicarboxylic acid diethyl ester.
    Walkenstein SS; Intoccia AP; Flanagan TL; Hwang B; Flint D; Weinstock J; Villani AJ; Blackburn D; Green H
    J Pharm Sci; 1973 Apr; 62(4):580-4. PubMed ID: 4633452
    [No Abstract]   [Full Text] [Related]  

  • 44. Suppression of a dicarboxylic acid transport mutant phenotype in Escherichia coli K12.
    Kay WW
    Biochim Biophys Acta; 1972 May; 264(3):522-9. PubMed ID: 4554902
    [No Abstract]   [Full Text] [Related]  

  • 45. Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City.
    Valencia-Islas N; Zambrano A; Rojas JL
    J Chem Ecol; 2007 Aug; 33(8):1619-34. PubMed ID: 17619930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential.
    Xu M; Heidmarsson S; Olafsdottir ES; Buonfiglio R; Kogej T; Omarsdottir S
    Phytomedicine; 2016 May; 23(5):441-59. PubMed ID: 27064003
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Degradation of L-lysine in "germ-free" rats].
    Boulanger P; Osteux R; Sacquet E; Charlier H
    Biochim Biophys Acta; 1969 Jul; 184(2):338-44. PubMed ID: 5809718
    [No Abstract]   [Full Text] [Related]  

  • 48. Change in atmospheric deposition during last half century and its impact on lichen community structure in Eastern Himalaya.
    Bajpai R; Mishra S; Dwivedi S; Upreti DK
    Sci Rep; 2016 Aug; 6():30838. PubMed ID: 27502030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Copper tolerance in the macrolichens Cladonia furcata and Cladina arbuscula subsp. mitis is constitutive rather than inducible.
    Bačkor M; Péli ER; Vantová I
    Chemosphere; 2011 Sep; 85(1):106-13. PubMed ID: 21676428
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isotope effects in the decarboxylation of 1-14C-dicarboxylic acids studied by means of the Schmidt reaction.
    Rabinowitz JL; Chase GD; Kaliner LF
    Anal Biochem; 1967 Jun; 19(3):578-83. PubMed ID: 6048166
    [No Abstract]   [Full Text] [Related]  

  • 51. Lichen Secondary Metabolite, Physciosporin, Inhibits Lung Cancer Cell Motility.
    Yang Y; Park SY; Nguyen TT; Yu YH; Nguyen TV; Sun EG; Udeni J; Jeong MH; Pereira I; Moon C; Ha HH; Kim KK; Hur JS; Kim H
    PLoS One; 2015; 10(9):e0137889. PubMed ID: 26371759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Permeability of housefly mitochondria towards dicarboxylate ions.
    Tulp A; Stam H; van Dam K
    Biochim Biophys Acta; 1971 Jun; 234(3):301-5. PubMed ID: 5117570
    [No Abstract]   [Full Text] [Related]  

  • 53. Alkylthioacetic acids (3-thia fatty acids) are metabolized and excreted as shortened dicarboxylic acids in vivo.
    Bergseth S; Bremer J
    Biochim Biophys Acta; 1990 May; 1044(2):237-42. PubMed ID: 2344442
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The sensitivity of dicarboxylate anion exchange reactions o transport inhibitors in rat-liver mitochondria.
    Robinson BH; Williams GR
    Biochim Biophys Acta; 1970 Aug; 216(1):63-70. PubMed ID: 5497191
    [No Abstract]   [Full Text] [Related]  

  • 55. The significance of lichens and their metabolites.
    Huneck S
    Naturwissenschaften; 1999 Dec; 86(12):559-70. PubMed ID: 10643590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ammonium and nitrate tolerance in lichens.
    Hauck M
    Environ Pollut; 2010 May; 158(5):1127-33. PubMed ID: 20096494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Pigment biosynthesis in negative temperature in lichens and hibernating plants].
    Godnev TN; Khodasevich EV; Arnautova AI
    Dokl Akad Nauk SSSR; 1966 Mar; 167(2):451-3. PubMed ID: 5998107
    [No Abstract]   [Full Text] [Related]  

  • 58. Carbohydrate movement between the symbionts of lichens.
    Richardson DH; Smith DC; Lewis DH
    Nature; 1967 May; 214(5091):879-82. PubMed ID: 6054967
    [No Abstract]   [Full Text] [Related]  

  • 59. Xanthones of Lichen Source: A 2016 Update.
    Le Pogam P; Boustie J
    Molecules; 2016 Mar; 21(3):294. PubMed ID: 26950106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences.
    Backor M; Peksa O; Skaloud P; Backorová M
    Ecotoxicol Environ Saf; 2010 May; 73(4):603-12. PubMed ID: 20031214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.